<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Skip Navigation

Absolute Value

Absolute value is simply the distance from zero of any given number or integer. Check out our modules and lessons below.

Atoms Practice
Estimated4 minsto complete
Practice Absolute Value
Estimated4 minsto complete
Practice Now
Absolute Value

What is the absolute value of the number –6?

Watch This

Khan Academy Absolute Value


Absolute value in the real number system is the distance from zero on the number line. It is always a positive number. Absolute value is always written as \begin{align*}|x|\end{align*}. Using this notation can be translated as “the positive value of \begin{align*}x\end{align*}”.

Example A




Example B



\begin{align*}|7-15|&=?\\ |-8|&=?\end{align*}


Example C

\begin{align*}|-9|-|-2| = ?\end{align*}


\begin{align*}|-9|-|-2| &= ?\\ |-9|-|-2| &= 9-2\\ |-9|-|-2| &= 7\end{align*}

Concept Problem Revisited

Remember the definition of absolute value in the real number system is the distance from zero on the number line. Let’s look at the distance from the –6 to zero.

Therefore \begin{align*}|-6|=6\end{align*}.

Guided Practice

1. \begin{align*}|-50|=?\end{align*}

2. \begin{align*}\big |- \frac{4}{5} \big |=?\end{align*}

3. \begin{align*}|-3|-|-4|=?\end{align*}


1. \begin{align*}|-50|=50\end{align*}

2. \begin{align*}\big | - \frac{4}{5}\big |=\frac{4}{5}\end{align*}

3. \begin{align*}|-3|-|-4|=3-4=-1\end{align*}. Remember that just because there is an absolute value in the problem doesn't mean that the answer is automatically positive!

Explore More

Evaluate each of the following:

  1. \begin{align*}|-4.5|=?\end{align*}
  2. \begin{align*}|-1|=?\end{align*}
  3. \begin{align*}\big | -\frac{1}{3} \big |=?\end{align*}
  4. \begin{align*}|4|=?\end{align*}
  5. \begin{align*}|-2|=?\end{align*}
  6. \begin{align*}|-1|+|3|=?\end{align*}
  7. \begin{align*}|5|-|-2|=?\end{align*}
  8. \begin{align*}\big | -\frac{1}{2}\big |+ \big | - \frac{2}{3} \big |=?\end{align*}
  9. \begin{align*}|-2.4|-|-1.6|=?\end{align*}
  10. \begin{align*}|-3|-|-2.4|=?\end{align*}
  11. \begin{align*}|2-4|=?\end{align*}
  12. \begin{align*}|5-6|=?\end{align*}
  13. \begin{align*}\big | -\frac{1}{2} - \frac{5}{6}\big |=?\end{align*}
  14. \begin{align*}|2.3-3.7|=?\end{align*}
  15. \begin{align*}|7.8 - 9.4|=?\end{align*}

Answers for Explore More Problems

To view the Explore More answers, open this PDF file and look for section 2.12. 


Absolute Value

Absolute Value

The absolute value of a number is the distance the number is from zero. Absolute values are never negative.

Image Attributions

Explore More

Sign in to explore more, including practice questions and solutions for Absolute Value.


Please wait...
Please wait...

Original text