<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />

## Add and subtract fractions with variables in the denominator

Estimated10 minsto complete
%
Progress

MEMORY METER
This indicates how strong in your memory this concept is
Progress
Estimated10 minsto complete
%

Suppose that you're taking a trip, and you'll be making two stops. This distance from your starting point to your first stop is 142\begin{align*}14 \sqrt{2}\end{align*} miles, and the distance from your first stop to your second stop is 92\begin{align*}9 \sqrt{2}\end{align*} miles. How far will you travel in total? What operation would you have to perform to find the answer to this question? In this Concept, you'll learn how to add and subtract radicals like the ones given here.

### Guidance

axn+bxn=(a+b)xn\begin{align*}a \sqrt[n]{x}+b\sqrt[n]{x}=(a+b)\sqrt[n]{x}\end{align*}

#### Example A

Add: 35+65\begin{align*}3\sqrt{5}+6\sqrt{5}\end{align*}.

Solution:

The value “5\begin{align*}\sqrt{5}\end{align*}” is considered a like term. Using the rule above:

35+65=(3+6)5=95\begin{align*}3 \sqrt{5}+6\sqrt{5}=(3+6) \sqrt{5}=9\sqrt{5}\end{align*}

#### Example B

Simplify 2133+6123\begin{align*}2\sqrt[3]{13} + 6 \sqrt[3]{12}\end{align*}.

Solution:

The cube roots are not like terms, so there can be no further simplification.

In some cases, the radical may need to be reduced before addition/subtraction is possible.

#### Example C

Simplify 43+212\begin{align*}4\sqrt{3}+2\sqrt{12}\end{align*}.

Solution:

12\begin{align*}\sqrt{12}\end{align*} simplifies to 23\begin{align*}2\sqrt{3}\end{align*}.

43+21243+4343+2(23)=83\begin{align*}4\sqrt{3}+2\sqrt{12} &\rightarrow 4\sqrt{3}+2\left ( 2\sqrt{3} \right )\\ 4\sqrt{3}+4\sqrt{3}&=8\sqrt{3}\end{align*}

### Guided Practice

Add: 323+5163\begin{align*}3\sqrt[3]{2}+5\sqrt[3]{16}\end{align*}.

Solution:

Begin by factoring the second radical.Simplify the second radical using properties of roots.The terms are now alike and can be added.323+5163=323+5283=323+52233=323+523323=323+5223=323+1023=(3+10)23=1323\begin{align*}\text{Begin by factoring the second radical.} && 3\sqrt[3]{2}+5\sqrt[3]{16}&=3\sqrt[3]{2}+5\sqrt[3]{2\cdot 8}=3\sqrt[3]{2}+5\sqrt[3]{2\cdot 2^3}\\ \text{Simplify the second radical using properties of roots.} && &=3\sqrt[3]{2}+5 \sqrt[3]{2^3}\cdot\sqrt[3]{2}=3\sqrt[3]{2}+5\cdot 2\sqrt[3]{2} =3\sqrt[3]{2}+10\sqrt[3]{2}\\ \text{The terms are now alike and can be added.} && &=(3+10)\sqrt[3]{2}=13 \sqrt[3]{2} \end{align*}

### Practice

Sample explanations for some of the practice exercises below are available by viewing the following videos. Note that there is not always a match between the number of the practice exercise in the videos and the number of the practice exercise listed in the following exercise set. However, the practice exercise is the same in both.

Write the following expressions in simplest radical form.

1. 48a3b73\begin{align*}\sqrt[3]{48a^3b^7}\end{align*}
2. 16x5135y43\begin{align*}\sqrt[3]{\frac{16x^5}{135y^4}}\end{align*}
3. True or false? 5766=3042\begin{align*}\sqrt[7]{5} \cdot \sqrt[6]{6}=\sqrt[42]{30}\end{align*}

Simplify the following expressions as much as possible.

1. 38632\begin{align*}3\sqrt{8}-6\sqrt{32}\end{align*}
2. 180+6405\begin{align*}\sqrt{180}+6\sqrt{405}\end{align*}
3. 627+254+348\begin{align*}\sqrt{6}-\sqrt{27}+2\sqrt{54}+3\sqrt{48}\end{align*}
4. 8x34x98x\begin{align*}\sqrt{8x^3}-4x\sqrt{98x}\end{align*}
5. 48a+27a\begin{align*}\sqrt{48a}+\sqrt{27a}\end{align*}
6. 4x33+x2563\begin{align*}\sqrt[3]{4x^3}+x\sqrt[3]{256}\end{align*}

Mixed Review

1. An item originally priced c\begin{align*}\c\end{align*} is marked down 15%. The new price is612.99. What is c\begin{align*}c\end{align*}?
2. Solve x+36=21x\begin{align*}\frac{x+3}{6}=\frac{21}{x}\end{align*}.
3. According to the Economic Policy Institute (EPI), minimum wage in 1989 was $3.35 per hour. In 2009, it was$7.25 per hour. What is the average rate of change?
4. What is the vertex of y=2(x+1)2+4\begin{align*}y=2(x+1)^2+4\end{align*}? Is this a minimum or a maximum?
5. Using the minimum wage data (adjusted for inflation) compiled from EPI, answer the following questions.
1. Graph the data as a scatter plot.
2. Which is the best model for this data: linear, quadratic, or exponential?
3. Find the model of best fit and use it to predict minimum wage adjusted for inflation for 1999.
4. According to EPI, the 1999 minimum wage adjusted for inflation was \$6.58. How close was your model?
5. Use interpolation to find the minimum wage in 1962.
Year Minimum Wage Adj. for Inflation Year Minimum Wage Adj. for Inflation
1947 3.40 1952 5.36
1957 6.74 1960 6.40
1965 7.52 1970 7.81
1978 7.93 1981 7.52
1986 6.21 1990 6.00
1993 6.16 1997 6.81
2000 6.37 2004 5.80
2006 5.44 2008 6.48
2009 7.25

### Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes