<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation
Our Terms of Use (click here to view) and Privacy Policy (click here to view) have changed. By continuing to use this site, you are agreeing to our new Terms of Use and Privacy Policy.

Algebra Expressions with Exponents

Calculate values of numbers with exponents

Atoms Practice
Estimated16 minsto complete
%
Progress
Practice Algebra Expressions with Exponents
Practice
Progress
Estimated16 minsto complete
%
Practice Now
Evaluate Numerical and Variable Expressions Involving Powers

License: CC BY-NC 3.0

Casey missed three days of school this week because of a nasty cold. When he returned to school on Thursday he asked his math teacher what he had missed. Miss Brown wrote a problem on a sheet of paper and handed it to Casey. When he arrived home from school Casey looked at his homework which was the following problem:

\begin{align*}{5}^{4}+{(-2)}^{4}+12\end{align*}

Casey didn’t know what to do with \begin{align*}{5}^{4}\end{align*}and \begin{align*}{(-2)}^{4}\end{align*}. How can he rewrite the problem so that he understands what operations to perform?

In this concept, you will learn how to evaluate numerical expressions involving powers.

Evaluating Expressions Involving Powers

A numerical expression is an expression made up only of numbers and operations but an expression written with a variable in it, is called a variable expression.

Both a numerical expression and a variable expression can include powers.

A power is the result of multiplying a number by itself one or more times. The number 16 is the fourth power of 2.

\begin{align*}2\times 2\times 2\times 2=16\end{align*}. The ‘fourth power of 2’ or ‘2 to the power of 4’ can be written as \begin{align*}{2}^{4}\end{align*}. The number raised to the power is called the base and the number expressing the power is called the exponent. The exponent tells you how many times to multiply the base times itself.\begin{align*}{6}^{3}=6 \times 6 \times 6\end{align*}.

Let’s look at an example.

Evaluate the following expression: 

\begin{align*}{6}^{3}+{5}^{2}+25\end{align*}

First, expand the powers to see the operations you need to perform. 

\begin{align*}{6}^{3}=6 \times 6 \times 6 \ \text{and} \ {5}^{2}= 5 \times 5\end{align*}Next, write the expression in expanded form. 

\begin{align*}6 \times 6 \times 6 + 5 \times 5+ 25\end{align*}

Next, apply the order to operations (PEMDAS) to evaluate the expanded expression.

Then, in order from left to right, multiply: \begin{align*}6 \times 6 = 36 \times 6 = 216\end{align*}and write the new expression.

\begin{align*}216 + 5 \times 5 + 25\end{align*}

Then, multiply: \begin{align*}5 \times 5=25\end{align*} and write the new expression.

\begin{align*}216+25+25\end{align*}

Next, from left to right, add: \begin{align*}216+25=241\end{align*}and write the new expression.

\begin{align*}241+25\end{align*}

Then, add:\begin{align*}241+25=266\end{align*} 

The answer is 266.

Let’s look at another example.

\begin{align*}{6}^{2}+15+{3}^{3}-11\end{align*}

First, expand the powers to see the operations you need to perform. 

\begin{align*}{6}^{2}=6 \times 6 \ \text{and} \ {3}^{3}=3 \times 3 \times 3 \end{align*}

Next, write the expression in expanded form.

\begin{align*}6 \times 6 + 15+ 3 \times 3 \times 3 -11\end{align*}

Next, apply the order to operations (PEMDAS) to evaluate the expanded expression.

Then, in order from left to right multiply: \begin{align*}6 \times 6 =36\end{align*}and write the new expression.

\begin{align*}36+15+3 \times 3 \times 3 -11\end{align*}

Then, multiply:\begin{align*}3 \times 3 \times 3 =27\end{align*}and write the new expression. 

\begin{align*}36+15+27-11\end{align*}

Next, from left to right, add: \begin{align*}36+15=51\end{align*}and write the new expression.  

\begin{align*}51+27-11\end{align*}

 Then, add:\begin{align*}51+27-78\end{align*}and write the new expression.

\begin{align*}78-11\end{align*}

Next, subtract:\begin{align*}78-11=67\end{align*}

The answer is 67.

Examples

Example 1

Earlier, you were given a problem about Casey and his confusing homework.

Casey needs to expand the powers so he can see what operations he has to do to evaluate the expression.

First, evaluate the two powers given in the problem.

\begin{align*}5^4= 5 \times 5 \times 5 \times 5 =625 \ \text{and} \ (-2)^4=-2 \times -2 \times-2 \times -2 =16 \end{align*} 

Next, replace the powers in the expression with their values. 

\begin{align*}625+16+12\end{align*}Then, add.

\begin{align*}625+16=641+12=653\end{align*}

The answer is 653.

Example 2

Evaluate the following variable expression when\begin{align*}x=4\end{align*}

\begin{align*}2x^3-12\end{align*}

First, substitute the value \begin{align*}x=4\end{align*}into the expression.

\begin{align*}2(4)^3-12\end{align*}

Next, expand the power.

\begin{align*}(4)^3=(4 \times 4 \times 4)\end{align*}Next, write the expression in expanded form.

\begin{align*}2(4 \times 4 \times 4 ) -12\end{align*}

Then, perform the operation in the parenthesis.

Multiply:\begin{align*}4 \times 4 = 16 \times 4 =64\end{align*}and write the new expression.

\begin{align*}2(64)-12\end{align*}

Next, multiply: \begin{align*}2(64)=128\end{align*}and write the new expression.

\begin{align*}128-12\end{align*}

Then, subtract.

\begin{align*}128-12=116\end{align*}

The answer is 116.

Example 3

Evaluate the following numerical expression.

\begin{align*}20-2^4+1+3^3\end{align*}

First, expand the powers. 

\begin{align*}2 \times 2 \times 2 \times 2 \ \text{and} \ 3 \times 3 \times 3\end{align*} 

 Next, write the expression in expanded form. 

\begin{align*}20- 2 \times 2 \times 2 \times 2 + 1+ 3 \times 3 \times 3\end{align*}

Then, in order from left to right multiply: \begin{align*}2 \times 2 \times 2 \times 2=16\end{align*}and write the new expression.

\begin{align*}20-16+1+ 3 \times 3 \times 3\end{align*}

Next, multiply: \begin{align*}3 \times 3 \times 3=27\end{align*} and write the new expression.

\begin{align*}20-16+1+27\end{align*}

Then, in order from left to write, subtract: \begin{align*}20-16=4\end{align*} and write the new expression.

\begin{align*}4+1+27\end{align*}

Next, add: \begin{align*}4+1=5\end{align*}and write the new expression.

\begin{align*}5+27\end{align*}

Then add: \begin{align*}5+27=32\end{align*} 

The answer is 32.

Example 4

Evaluate the following variable expression when \begin{align*}m=3\end{align*}and\begin{align*}n=2\end{align*}

\begin{align*}n^5+3m^2-15\end{align*}

First, substitute \begin{align*}m=3\end{align*}and\begin{align*}n=2\end{align*}into the variable expression.

\begin{align*}2^5+3(3)^2-15\end{align*}Next, expand the powers:\begin{align*}2^5=( 2 \times 2 \times 2 \times 2 \times 2) \ \text{and} \ (3)^2 =(3 \times 3)\end{align*}  

Then, write the expression in expanded form.

\begin{align*}2 \times 2 \times 2 \times 2 \times 2 +3 (3 \times 3)-15\end{align*}

Then, perform the operation in the parenthesis.

First, multiply: \begin{align*}(3 \times 3)=(9)\end{align*}and write the new expression.

\begin{align*}2 \times 2 \times 2 \times 2 \times 2 + 3(9)-15\end{align*}

Next, multiply: \begin{align*}3(9)=27\end{align*}to clear the parenthesis. Write the new expression.

\begin{align*}2 \times 2 \times 2 \times 2 \times 2 +27-15\end{align*}

Next, multiply:  \begin{align*}2 \times 2 = 4 \times 2 = 8 \times 2 =16 \times 2 =32 \end{align*}Write the new expression.

\begin{align*}32+27-15\end{align*}

Next, add: \begin{align*}32+27=59\end{align*}and write the new expression. 

\begin{align*}59-15\end{align*}Then, subtract: \begin{align*}59-15=44\end{align*} 

The answer is 44.

Review

Expand and evaluate each power.

1. \begin{align*}3^3\end{align*}

2. \begin{align*}4^2\end{align*}

3. \begin{align*}(-2)^4\end{align*}

4. \begin{align*}(-8)^2\end{align*}

5. \begin{align*}5^3\end{align*}

6. \begin{align*}2^6\end{align*}

7. \begin{align*}(-9)^2\end{align*}

8. \begin{align*}(-2)^6\end{align*}

Evaluate each numerical expression. Remember to apply PEMDAS to evaluate the expression accurately.

9. \begin{align*}6^2+22\end{align*}

10. \begin{align*}(-3)^3+18\end{align*}

11. \begin{align*}2^3+16-4\end{align*}

12. \begin{align*}(-5)^2-19\end{align*}

13. \begin{align*}(-7)^2+52-2\end{align*}

14. \begin{align*}18+9^2-3\end{align*}

15. \begin{align*}22-3^3+7\end{align*}

Evaluate each variable expression using the given values.

16. \begin{align*}6a+4^2-2\end{align*}, when \begin{align*}a=3\end{align*}

17. \begin{align*}a^3+14\end{align*}, when \begin{align*}a=6\end{align*}

18. \begin{align*}2a^2-16\end{align*}, when \begin{align*}a=4\end{align*}

19. \begin{align*}5b^3+12\end{align*}, when \begin{align*}b=-2\end{align*}

20. \begin{align*}2x^2+52\end{align*}, when \begin{align*}x=4\end{align*}

Review (Answers)

To see the Review answers, open this PDF file and look for section 1.6. 

Resources

Vocabulary

Base

When a value is raised to a power, the value is referred to as the base, and the power is called the exponent. In the expression 32^4, 32 is the base, and 4 is the exponent.

Evaluate

To evaluate an expression or equation means to perform the included operations, commonly in order to find a specific value.

Expression

An expression is a mathematical phrase containing variables, operations and/or numbers. Expressions do not include comparative operators such as equal signs or inequality symbols.

Integer

The integers consist of all natural numbers, their opposites, and zero. Integers are numbers in the list ..., -3, -2, -1, 0, 1, 2, 3...

Numerical expression

A numerical expression is a group of numbers and operations used to represent a quantity.

Parentheses

Parentheses "(" and ")" are used in algebraic expressions as grouping symbols.

Power

The "power" refers to the value of the exponent. For example, 3^4 is "three to the fourth power".

substitute

In algebra, to substitute means to replace a variable or term with a specific value.

Variable Expression

A variable expression is a mathematical phrase that contains at least one variable or unknown quantity.

Volume

Volume is the amount of space inside the bounds of a three-dimensional object.

Image Attributions

  1. [1]^ License: CC BY-NC 3.0

Explore More

Sign in to explore more, including practice questions and solutions for Algebra Expressions with Exponents.
Please wait...
Please wait...