<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Skip Navigation

Algebra Expressions with Fraction Bars

Evaluate the numerator, evaluate the denominator, then simplify

Atoms Practice
Estimated26 minsto complete
Practice Algebra Expressions with Fraction Bars
This indicates how strong in your memory this concept is
Estimated26 minsto complete
Practice Now
Turn In
Algebra Expressions with Fraction Bars

Expressions Involving Fraction Bars 

Fraction bars count as grouping symbols for PEMDAS, so we evaluate them in the first step of solving an expression. All numerators and all denominators can be treated as if they have invisible parentheses around them. When real parentheses are also present, remember that the innermost grouping symbols come first. If, for example, parentheses appear on a numerator, they would take precedence over the fraction bar. If the parentheses appear outside of the fraction, then the fraction bar takes precedence.

Evaluating Expressions 

Use the order of operations to evaluate the following expression: z+341 when z=2

We substitute the value for z into the expression.


Although this expression has no parentheses, the fraction bar is also a grouping symbol, it has the same effect as a set of parentheses. We can write in the “invisible parentheses” for clarity:


Using PEMDAS, we first evaluate the numerator, 2 + 3 = 5. Now we have:


We can convert 54 to a mixed number:


Then evaluate the expression:


Evaluating Multi-Variable Expressions

Use the order of operations to evaluate the expression (a+2b+41)+b when a=3 and b=1.

Substitute the given values for a and b into the expression:


This expression effectively has nested parentheses (remember the effect of the fraction bar). The innermost grouping symbol is provided by the fraction bar. Evaluate the numerator (3+2)=5 and denominator (1+4)=5 first:

(3+21+4+1)+1=(551)+1Now evaluate inside the parentheses. First, divide.=(11)+1Next, subtract.=0+1=1

Using a Graphing Calculator 

Use a graphing calculator to evaluate the expression 3x24y2+x4(x+y)12 for x=2, y=1.

License: CC BY-NC 3.0

Store the values of x and y: 2 [STO] x, -1 [STO] y. (The letters x and y can be entered using [ALPHA] + [KEY].) Input the expression in the calculator. When an expression includes a fraction, be sure to use parentheses: (numerator)(denominator).

Press [ENTER] to obtain the answer, 24.


Example 1

Use the order of operations to evaluate the expression 2×(w+(x2z)(y+2)21) when w=11, x=3, y=1, and z=2.

Substitute the values for w, x, y, and z into the expression:


This complicated expression has several layers of nested parentheses. One method for ensuring that we start with the innermost parentheses is to use more than one type of parentheses. Working from the inside, we leave the innermost grouping symbols as parentheses ( ). Next will be the “invisible brackets” from the fraction bar, write these as [ ]. The third level of nested parentheses will be the braces { }. Leave negative numbers in regular parentheses.

2×[11+(32(2))][(1+2)2]1   Start by evaluating the parentheses.  (32(2))=3+4=7 : (1+2)=3=2{[11+7][32]1}Next, evaluate the square brackets.=2{1891}  Now evaluate the braces. Start with division.=2{21}Finally, do the addition and subtraction.=2{1}=2


For 1-3, use the order of operations to evaluate the expressions.

  1. 2(3+(21))4(6+2)(35)
  2. 4+7(3)94+12322
  3. (22+5)25242÷(2+1)

For 4-9, evaluate the expressions by substituting for the variables.

  1. jkj+k when j=6 and k=12
  2. x+y2yx when x=2 and y=3
  1. 4x9x23x+1 when x=2
  2. z2x+y+x2xy when \begin{align*}x = 1, \ y = -2,\end{align*} and \begin{align*}z = 4\end{align*}
  3. \begin{align*}\frac { 4xyz } { y^2 - x^2 }\end{align*} when \begin{align*}x = 3, \ y = 2,\end{align*} and \begin{align*}z = 5\end{align*}
  4. \begin{align*}\frac { x^2 - z^2 } { xz - 2x(z - x)}\end{align*} when \begin{align*}x = -1 \end{align*} and \begin{align*}z = 3\end{align*}

For 10-14, evaluate each expression using a graphing calculator.

  1. \begin{align*}x^2 + 2x - xy\end{align*} when \begin{align*}x = 250\end{align*} and \begin{align*}y = -120\end{align*}
  2. \begin{align*}(xy - y^4)^2\end{align*} when \begin{align*}x = 0.02\end{align*} and \begin{align*}y = -0.025\end{align*}
  3. \begin{align*}\frac { x + y - z } { xy + yz + xz }\end{align*} when \begin{align*}x = \frac { 1 } { 2 }, \ y = \frac{3}{2},\end{align*} and \begin{align*}z = -1 \end{align*}
  4. \begin{align*}\frac{(x + y)^2}{4x^2 - y^2}\end{align*} when \begin{align*}x = 3\end{align*} and \begin{align*}y = -5\end{align*}
  5. \begin{align*}\frac{(x - y)^3}{x^3 - y} + \frac{(x + y)^2}{x + y^4}\end{align*} when \begin{align*}x = 4\end{align*} and \begin{align*}y = -2\end{align*}

Review (Answers)

To view the Review answers, open this PDF file and look for section 1.5. 

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / Notes
Show More


Fraction Bar

A fraction bar is a line used to divide the numerator and the denominator of a fraction. The fraction bar means division.

Order of Operations

The order of operations specifies the order in which to perform each of multiple operations in an expression or equation. The order of operations is: P - parentheses, E - exponents, M/D - multiplication and division in order from left to right, A/S - addition and subtraction in order from left to right.


Parentheses "(" and ")" are used in algebraic expressions as grouping symbols.


PEMDAS (Please Excuse My Daring Aunt Sally) is a mnemonic device used to help remember the order of operations: Parentheses, Exponents, Multiplication/Division, Addition/Subtraction.

Image Attributions

  1. [1]^ License: CC BY-NC 3.0

Explore More

Sign in to explore more, including practice questions and solutions for Algebra Expressions with Fraction Bars.
Please wait...
Please wait...