<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />

# Completing the Square when the Leading Coefficient Equals 1

## Complete the perfect square to solve simple trinomials

Estimated10 minsto complete
%
Progress
Practice Completing the Square when the Leading Coefficient Equals 1

MEMORY METER
This indicates how strong in your memory this concept is
Progress
Estimated10 minsto complete
%
Completing the Square When the Leading Coefficient Equals 1

The area of a parallelogram is given by the equation x2+8x5=0\begin{align*}x^2 + 8x - 5 = 0\end{align*}, where x is the length of the base. What is the length of this base?

### Completing the Square

Completing the square is another technique used to solve quadratic equations. When completing the square, the goal is to make a perfect square trinomial and factor it.

Let's solve the following quadratic equations.

1. Solve x28x1=10\begin{align*}x^2-8x-1=10\end{align*}.

Step 1: Write the polynomial so that x2\begin{align*}x^2\end{align*} and x\begin{align*}x\end{align*} are on the left side of the equation and the constants on the right. This is only for organizational purposes, but it really helps. Leave a little space after the x\begin{align*}x-\end{align*}term.

x28x=11\begin{align*}x^2-8x=11\end{align*}

Step 2: Now, "complete the square." Determine what number would make a perfect square trinomial with x28x+c\begin{align*}x^2-8x+c\end{align*}. To do this, divide the x\begin{align*}x-\end{align*}term by 2 and square that number, or (b2)2\begin{align*}\left(\frac{b}{2}\right)^2\end{align*}.

\begin{align*}\left(\frac{b}{2}\right)^2=\left(\frac{8}{2}\right)^2=4^2=16\end{align*}

Step 3: Add this number to both sides in order to keep the equation balanced.

\begin{align*}x^2-8x {\color{red}+16}=11 {\color{red}+16}\end{align*}

Step 4: Factor the left side to the square of a binomial and simplify the right.

\begin{align*}(x-4)^2=27\end{align*}

Step 5: Solve by using square roots.

\begin{align*}x-4 &=\pm3\sqrt{3}\\ x &=4 \pm 3 \sqrt{3}\end{align*}

Completing the square enables you to solve any quadratic equation using square roots. Through this process, we can make an unfactorable quadratic equation solvable, like the one above. It can also be used with quadratic equations that have imaginary solutions.

1. Solve \begin{align*}x^2+12x+37=0\end{align*}

First, this is not a factorable quadratic equation. Therefore, the only way we know to solve this equation is to complete the square. Follow the steps from the problem above.

Step 1: Organize the polynomial, \begin{align*}x\end{align*}'s on the left, constant on the right.

\begin{align*}x^2+12x=-37\end{align*}

Step 2: Find \begin{align*}\left(\frac{b}{2}\right)^2\end{align*} and add it to both sides.

\begin{align*}\left(\frac{b}{2}\right)^2 = \left(\frac{12}{2}\right)^2 &=6^2={\color{red}36}\\ x^2+12x+{\color{red}36} &=-37+{\color{red}36}\end{align*}

Step 3: Factor the left side and solve. \begin{align*}(x+6)^2 &=-1\\ x+6 &=\pm i\\ x &=-6\pm i\end{align*}

1. Solve \begin{align*}x^2-11x-15=0\end{align*}.

This is not a factorable equation. Use completing the square.

Step 1: Organize the polynomial, \begin{align*}x\end{align*}’s on the left, constant on the right.

\begin{align*}x^2-11x=15\end{align*}

Step 2: Find \begin{align*}\left(\frac{b}{2}\right)^2\end{align*} and add it to both sides.

\begin{align*}\left(\frac{b}{2}\right)^2 &=\left(\frac{11}{2}\right)^2 = {\color{red}\frac{121}{4}}\\ x^2-11x+{\color{red}\frac{121}{4}} &=15+{\color{red}\frac{121}{4}}\end{align*}

Step 3: Factor the left side and solve.

\begin{align*}\left(x-\frac{11}{2}\right)^2 &=\frac{60}{4}+{\color{red}\frac{121}{4}}\\ \left(x-\frac{11}{2}\right)^2 &=\frac{181}{4}\\ x-\frac{11}{2} &=\pm \frac{\sqrt{181}}{2}\\ x &=\frac{11}{2}\pm \frac{\sqrt{181}}{2}\end{align*}

### Examples

#### Example 1

Earlier, you were asked to find the length of the base of the parallelogram.

We can't factor \begin{align*}x^2 + 8x - 5 = 0\end{align*}, so we must complete the square.

Step 1: Write the polynomial so that \begin{align*}x^2\end{align*} and \begin{align*}x\end{align*} are on the left side of the equation and the constants are on the right.

\begin{align*}x^2 + 8x = 5\end{align*}

Step 2: Now, complete the square. \begin{align*}\left(\frac{b}{2}\right)^2=\left(\frac{8}{2}\right)^2=4^2=16\end{align*}

Step 3: Add this number to both sides in order to keep the equation balanced.

\begin{align*}x^2 + 8x {\color{red} + 16}=5 {\color{red} + 16}\end{align*}

Step 4: Factor the left side to the square of a binomial and simplify the right.

\begin{align*}(x + 4)^2=21\end{align*}

Step 5: Solve by using square roots.

\begin{align*}x + 4 &=\pm\sqrt{21}\\ x &= -4 \pm \sqrt{21}\end{align*}

However, because x is the length of the parallelogram's base, it must be a positive value. Only \begin{align*}-4 + \sqrt{21}\end{align*} results in a positive value. Therefore, the length of the base is \begin{align*}-4 + \sqrt{21}\end{align*}.

#### Example 2

Find the value of \begin{align*}c\end{align*} that would make \begin{align*}x^2-2x+c\end{align*} a perfect square trinomial. Then, factor the trinomial.

\begin{align*}c=\left(\frac{b}{2}\right)^2=\left(\frac{2}{2}\right)^2=1^2=1\end{align*}. The factors of \begin{align*}x^2-2x+1\end{align*} are \begin{align*}(x - 1)(x - 1)\end{align*} or \begin{align*}(x - 1)^2\end{align*}.

#### Example 3

Solve the following quadratic equation by completing the square\begin{align*}x^2+10x+21=0\end{align*}.

Use the steps from the examples above.

\begin{align*}x^2+10x+21 &=0\\ x^2+10x &=-21\\ x^2+10x+\left(\frac{10}{2}\right)^2 &=-21+\left(\frac{10}{2}\right)^2\\ x^2+10x+25 &=-21+25\\ (x+5)^2 &=4\\ x+5 &=\pm 2\\ x &=-5\pm 2\\ x &=-7,-3\end{align*}

#### Example 4

Solve the following quadratic equation by completing the square: \begin{align*}x-5x=12\end{align*}.

Use the steps from the examples above.

\begin{align*}x^2-5x &=12\\ x^2-5x+\left(\frac{5}{2}\right)^2 &=12+\left(\frac{5}{2}\right)^2\\ x^2-5x+\frac{25}{4} &=\frac{48}{4}+\frac{25}{4}\\ \left(x-\frac{5}{2}\right)^2 &=\frac{73}{4}\\ x-\frac{5}{2} &=\pm \frac{\sqrt{73}}{2}\\ x &=\frac{5}{2}\pm \frac{\sqrt{73}}{2}\end{align*}

### Review

Determine the value of \begin{align*}c\end{align*} that would complete the perfect square trinomial.

1. \begin{align*}x^2+4x+c\end{align*}
2. \begin{align*}x^2-2x+c\end{align*}
3. \begin{align*}x^2+16x+c\end{align*}

Rewrite the perfect square trinomial as a square of a binomial.

1. \begin{align*}x^2+6x+9\end{align*}
2. \begin{align*}x^2-7x+\frac{49}{4}\end{align*}
3. \begin{align*}x^2-\frac{1}{2}x+\frac{1}{16}\end{align*}

Solve the following quadratic equations by completing the square.

1. \begin{align*}x^2+6x-15=0\end{align*}
2. \begin{align*}x^2+10x+29=0\end{align*}
3. \begin{align*}x^2-14x+9=-60\end{align*}
4. \begin{align*}x^2+3x+18=-2\end{align*}
5. \begin{align*}x^2-9x-5=23\end{align*}
6. \begin{align*}x^2-20x=60\end{align*}

Solve the following quadratic equations by factoring, square roots, or completing the square.

1. \begin{align*}x^2+x-30=0\end{align*}
2. \begin{align*}x^2-18x+90=0\end{align*}
3. \begin{align*}x^2+15x+56=0\end{align*}
4. \begin{align*}x^2+3x-24=12\end{align*}
5. \begin{align*}(x-2)^2-20=-45\end{align*}
6. \begin{align*}x^2+24x+44=-19\end{align*}
7. Solve \begin{align*}x^2+7x-44=0\end{align*} by factoring and completing the square. Which method do you prefer?
8. Challenge Solve \begin{align*}x^2+\frac{17}{8}x-2=-9\end{align*}.

To see the Review answers, open this PDF file and look for section 5.11.

### Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes

### Vocabulary Language: English

TermDefinition
Binomial A binomial is an expression with two terms. The prefix 'bi' means 'two'.
Completing the Square Completing the square is a common method for rewriting quadratics. It refers to making a perfect square trinomial by adding the square of 1/2 of the coefficient of the $x$ term.