Suppose you spent 2 more hours doing your homework this week than you spent last week. If the number of hours that you spent last week is represented by

### Compound Inequalities

Inequalities that relate to the same topic can be written as a **compound inequality**. A compound inequality involves the connecting words “and” and “or.”

The word **and** in mathematics means the **intersection** between the sets or “What the sets have in common.”

The word **or** in mathematics means the **union** of the sets or “Combining both sets into one large set.”

#### Inequalities Involving “And”

Suppose you were given the statement “The speed limit is 65 miles per hour.” Using interval notation, the solutions to this situation can be written as [0, 65]. As an inequality, what is being said it this:

The speed must be at least 0 mph and at most 65 mph.

Using inequalities to represent “at least” and “at most,” the following sentences are written:

This is an example of a compound inequality. It can be shortened by writing:

#### Let's graph the solutions to −40≤y<60 :

Color in a circle above –40 to represent “less than or equal to.” Draw an uncolored circle above 60. The variable is placed between these two values, so the solutions occur between these two numbers.

#### Solving “And” Compound Inequalities

When we solve compound inequalities, we separate the inequalities and solve each of them separately. Then, we combine the solutions at the end.

#### Let's solve for and graph the solution to the following inequality:

3x−5<x+9≤5x+13

To solve

The answers are

#### Inequalities Involving “Or”

Suppose a restaurant offers discounts to children 3 years or younger or to adults over 65.

To write an inequality to represent this situation, begin by writing an inequality to represent each piece. “3 years or younger” means you must be born but must not have celebrated your fourth birthday.

“Adults over 65” implies

To finish writing the inequality, add the word or between the phrases.

The word "or" between the phrases allows you to graph all the possibilities on one number line.

#### Solving “Or” Compound Inequalities

To solve an “or” compound inequality, separate the individual inequalities. Solve each separately. Then combine the solutions to finish the problem.

#### Let's solve for x and graph the solution to the following inequality:

To solve

The answers are

#### Using a Graphing Calculator to Solve Compound Inequalities

As you have seen in previous Concepts, graphing calculators can be used to solve many complex algebraic sentences.

#### Let's solve 7x−2<10x+1<9x+5 using a graphing calculator:

This is a compound inequality:

To enter a compound inequality:

Press the **[Y=]** button.

The inequality symbols are found by pressing **[TEST]** **[2nd] [MATH]**

Enter the inequality as:

To enter the **[AND]** symbol, press **[TEST]**. Choose **[LOGIC]** on the top row and then select option 1.

The resulting graph is as shown below.

The solutions are the values of

In this case,

### Examples

#### Example 1

Earlier, you were told to assume that you spent 2 more hours doing your homework this week than you spent last week. If the number of hours that you spent last week is represented by

If you spent

To solve this, begin by separating the inequalities:

Putting these two inequalities together, you get

You spent between 4 and 7 hours working on homework last week.

#### Example 2

Graph the solution set for

Start by solving for

### Review

- Describe the solution set to a compound inequality joined by the word “and.”
- How would your answer to question #1 change if the joining word was “or.”
- Write the process used to solve a compound inequality.

Write the compound inequalities represented by the following graphs.

Graph each compound inequality on a number line.

−4≤x≤6 x<0 orx>2 x≥−8 orx≤−20 −15<x≤85

In 15–30, solve the following compound inequalities and graph the solution on a number line.

−5≤x−4≤13 −2<4x−5≤11 x−26≤2x−4 orx−26>x+5 1≤3x+4≤4 −12≤2−5x≤7 - \begin{align*}\frac{3}{4} \le 2x+9 \le \frac{3}{2}\end{align*}
- \begin{align*}-2 < \frac{2x-1}{3} < -1\end{align*}
- \begin{align*}5x+2(x-3)\ge 2\end{align*}
- \begin{align*}3x+2 \le 10\end{align*} or \begin{align*}3x+2 \ge 15\end{align*}
- \begin{align*}4x-1 \ge 7\end{align*} or \begin{align*}\frac{9x}{2} < 3\end{align*}
- \begin{align*}3-x < -4\end{align*} or \begin{align*}3-x > 10\end{align*}
- \begin{align*}\frac{2x+3}{4} < 2\end{align*} or \begin{align*}-\frac{x}{5}+3\frac{2}{5}\end{align*}
- \begin{align*}2x - 7 \le -3\end{align*} or \begin{align*}2x - 3 > 11\end{align*}
- \begin{align*}-6d>48\end{align*} or \begin{align*}10+d>11\end{align*}
- \begin{align*}6+b<8\end{align*} or \begin{align*}b+6 \ge 6\end{align*}
- \begin{align*}4x+3 \le 9\end{align*} or \begin{align*}-5x+4 \le -12\end{align*}

### Review (Answers)

To see the Review answers, open this PDF file and look for section 6.5.