<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Skip Navigation

Distance Formula

Using the Pythagorean Theorem to determine distances

Atoms Practice
Estimated19 minsto complete
Practice Distance Formula
This indicates how strong in your memory this concept is
Estimated19 minsto complete
Practice Now
Turn In
The Distance Formula

Triangle has vertices and . The triangle is reflected about the -axis to form triangle . Assuming that ,and , prove the two triangles are congruent.

The Distance Formula

Two shapes are congruent if they are exactly the same shape and exactly the same size. In congruent shapes, all corresponding sides will be the same length and all corresponding angles will be the same measure. Translations, reflections, and rotations all create congruent shapes.

If you want to determine whether two segments are the same length, you could try to use a ruler. Unfortunately, it's hard to be very precise with a ruler. You could also use geometry software, but that is not always available. If the segments are on the coordinate plane and you know their endpoints, you can use the distance formula:

The distance formula helps justify congruence by proving that the sides of the preimage have the same length as the sides of the transformed image. The distance formula is derived using the Pythagorean Theorem, which you will learn more about in geometry.



Let's solve the following problems using the distance formula:

  1. Line segment is translated 5 units to the right and 6 units down to produce line . The diagram below shows the endpoints of lines and . Prove the two line segments are congruent.

  1. Line segment has been rotated about the origin CCW to produce . The diagram below shows the lines and . Prove the two line segments are congruent.

  1. The square has been reflected about the line to produce as shown in the diagram below. Prove the two are congruent.

Since the figures are squares, you can conclude that all angles are the same and equal to . You can also conclude that for each square, all the sides are the same length. Therefore, all you need to verify is that .

Since and both shapes are squares, all 8 sides must be the same length. Therefore, the two squares are congruent.


Example 1

Earlier, you were asked to prove that the two triangles below are congruent. 

To prove congruence, prove that and .

It is given that and , and the distance formula proved that and . Therefore the two triangles are congruent.

Example 2

Line segment drawn from to has undergone a reflection in the -axis to produce Line drawn from to . Draw the preimage and image and prove the two lines are congruent.

Example 3

The triangle below has undergone a rotation of CW about the origin. Given that all of the angles are equal, draw the transformed image and prove the two figures are congruent.

Example 4

The polygon below has undergone a translation of 7 units to the left and 1 unit up. Given that all of the angles are equal, draw the transformed image and prove the two figures are congruent.


Find the length of each line segment below given its endpoints. Leave all answers in simplest radical form.

  1. Line segment given and .
  2. Line segment given and .
  3. Line segment given and .
  4. Line segment given and .
  5. Line segment given and .
  6. Line segment given and .
  7. Line segment given and .
  8. Line segment given and .
  9. Line segment given and .
  10. Line segment given and .
  11. Line segment given and .

For each of the diagrams below, assume the corresponding angles are congruent. Find the lengths of the line segments to prove congruence.

Review (Answers)

To see the Review answers, open this PDF file and look for section 10.17. 

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / Notes
Show More


Distance Formula

The distance between two points (x_1, y_1) and (x_2, y_2) can be defined as d= \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}.

Midpoint Formula

The midpoint formula says that for endpoints (x_1, y_1) and (x_2, y_2), the midpoint is @$\left( \frac{x_1+x_2}{2}, \frac{y_1+y_2}{2} \right)@$.

Image Attributions

Explore More

Sign in to explore more, including practice questions and solutions for Distance Formula.
Please wait...
Please wait...