<meta http-equiv="refresh" content="1; url=/nojavascript/">
Dismiss
Skip Navigation
You are viewing an older version of this Concept. Go to the latest version.

Evaluating Exponential Expressions

%
Progress
Practice Evaluating Exponential Expressions
Practice
Progress
%
Practice Now
Evaluating Exponential Expressions

What if you had an exponential expression requiring multiple operations, like 2\left(\frac{1}{4}\right)^2 - \left(\frac{1}{4}\right)^3 ? How could you simplify it? After completing this Concept, you'll be able to use the order of operations to evaluate exponential expressions like this one.

Watch This

Foundation: 02807S Evaluating Exponential Expressions

Guidance

When evaluating expressions we must keep in mind the order of operations. You must remember PEMDAS:

  1. Evaluate inside the Parentheses .
  2. Evaluate E xponents.
  3. Perform M ultiplication and D ivision operations from left to right.
  4. Perform A ddition and S ubtraction operations from left to right.

Example A

Evaluate the following expressions.

a) 5^0

b) \left(\frac{2}{3}\right)^3

c) 16^{\frac{1}{2}}

d) 8^{-\frac{1}{3}}

Solution

a) 5^0=1 A number raised to the power 0 is always 1.

b) \left(\frac{2}{3}\right)^3=\frac{2^3}{3^3}=\frac{8}{27}

c) 16^{\frac{1}{2}}=\sqrt{16}=4 Remember that an exponent of \frac{1}{2} means taking the square root.

d) 8^{-\frac{1}{3}}=\frac{1}{8^{\frac{1}{3}}}=\frac{1}{\sqrt[3]{8}}=\frac{1}{2} Remember that an exponent of \frac{1}{3} means taking the cube root.

Example B

Evaluate the following expressions.

a) 3 \cdot 5^2-10 \cdot 5+1

b) \frac{2 \cdot 4^2-3 \cdot 5^2}{3^2-2^2}

c) \left(\frac{3^3}{2^2}\right)^{-2} \cdot \frac{3}{4}

Solution

a) Evaluate the exponent: 3 \cdot 5^2 - 10 \cdot 5+1=3 \cdot 25-10 \cdot 5+1

Perform multiplications from left to right: 3 \cdot 25-10 \cdot 5+1=75-50+1

Perform additions and subtractions from left to right: 75-50+1=26

b) Treat the expressions in the numerator and denominator of the fraction like they are in parentheses: \frac{(2 \cdot 4^2-3 \cdot 5^2)}{(3^2-2^2)}=\frac{(2 \cdot 16-3 \cdot 25)}{(9-4)}=\frac{(32-75)}{5}=\frac{-43}{5}

c) \left(\frac{3^3}{2^2}\right)^{-2} \cdot \frac{3}{4}=\left(\frac{2^2}{3^3}\right)^2 \cdot \frac{3}{4}=\frac{2^4}{3^6} \cdot \frac{3}{4}=\frac{2^4}{3^6} \cdot \frac{3}{2^2}=\frac{2^2}{3^5}=\frac{4}{243}

Example C

Evaluate the following expressions for x = 2, y = - 1, z = 3 .

a) 2x^2-3y^3+4z

b) (x^2-y^2)^2

c) \left(\frac{3x^2y^5}{4z}\right)^{-2}

Solution

a) 2x^2-3y^3+4z&=2 \cdot 2^2-3 \cdot (-1)^3+4 \cdot 3\\ &=2 \cdot 4-3 \cdot (-1)+4 \cdot 3=8+3+12\\ &=23

b) (x^2-y^2)^2=(2^2 - (-1)^2)^2=(4-1)^2=3^2=9

c)

\left( \frac{3x^2y^5}{4z}\right)^{-2}&=\left( \frac{3 \cdot 2^2 \cdot (-1)^5}{4 \cdot 3}\right)^{-2}\\ &=\left(\frac{3 \cdot 4 \cdot (-1)}{12}\right)^{-2}\\ &=\left(\frac{-12}{12}\right)^{-2}\\ &=\left(\frac{-1}{1}\right)^{-2}\\ &=\left(\frac{1}{-1}\right)^2\\ &=(-1)^2\\ &=1

Watch this video for help with the Examples above.

CK-12 Foundation: Evaluating Exponential Expressions

Vocabulary

  • When evaluating expressions we must keep in mind the order of operations. You must remember PEMDAS:
  1. Evaluate inside the Parentheses .
  2. Evaluate E xponents.
  3. Perform M ultiplication and D ivision operations from left to right.
  4. Perform A ddition and S ubtraction operations from left to right.

Guided Practice

Evaluate the following expression for x = 3, y = -2, z = -1 .

2z((x+1)^\frac{1}{2}-y^3)^2

Solution:

2z((x+1)^\frac{1}{2}-y^3)^2&=2(-1)(((3)+1)^\frac{1}{2}-(-2)^3)^2\\ &=-2(4^\frac{1}{2}+8)^2\\ &=-2(2+8)^2\\ &=-2(10)^2\\ &=-200

Practice

Evaluate the following expressions to a single number.

  1. 3^{-2}
  2. {-4}^{-3}
  3. (6.2)^0
  4. 8^{-4} \cdot 8^6
  5. \left (16^\frac{1}{2} \right )^3
  6. x^2 \cdot 4x^3 \cdot y^4 \cdot 4y^2 , if x = 2 and y = -1
  7. a^4(b^2)^3 + 2ab , if a = -2 and b = 1
  8. 5x^2 - 2y^3 + 3z , if x = 3, y = 2, and z = 4
  9. \left ( \frac{a^2}{b^3} \right )^{-2} , if a = 5 and b = 3
  10. \left ( \frac{x^{-2}}{y^4} \right )^\frac{1}{2} , if x=-3 and y=2

Image Attributions

Explore More

Sign in to explore more, including practice questions and solutions for Evaluating Exponential Expressions.

Reviews

Please wait...
Please wait...

Help us improve the site! Which of the following best describes your visit today?

I'm a student and I found this site on my own.
I'm a student and my teacher told me to come to this site.
I'm a teacher looking for materials to use in class.
I'm preparing for teacher certification exam, e.g. Praxis II.
Other

Thanks for answering this poll. Your feedback will help us continue to improve the site!

Original text