<meta http-equiv="refresh" content="1; url=/nojavascript/"> Evaluating Exponential Expressions ( Read ) | Algebra | CK-12 Foundation
Skip Navigation
You are viewing an older version of this Concept. Go to the latest version.

Evaluating Exponential Expressions

Practice Evaluating Exponential Expressions
Practice Now
Exponential Expressions

Can you simplify the following expression so that it has only positive exponents?


Watch This

James Sousa: Simplify Exponential Expressions


The following table summarizes all of the rules for exponents.

Laws of Exponents

If a \in R, a \ge 0 and m, n \in Q , then

  1. a^m \times a^n=a^{m+n}
  2. \frac{a^m}{a^n}=a^{m-n} \ (\text{if} \ m > n, a \neq 0)
  3. (a^m)^n=a^{mn}
  4. (ab)^n=a^nb^n
  5. \left(\frac{a}{b}\right)^n=\frac{a^n}{b^n} \ (b \neq 0)
  6. a^0=1 \ (a \neq 0)
  7. a^{-m}=\frac{1}{a^m}
  8. a^{\frac{m}{n}}=\sqrt[n]{a^m}=\left(\sqrt[n]{a}\right)^m

Example A

Evaluate 81^{-\frac{1}{4}} .

Solution: First, rewrite with a positive exponent:

81^{-\frac{1}{4}}=\frac{1}{81^{\frac{1}{4}}}=\left(\frac{1}{81}\right)^{\frac{1}{4}} .

Next, evaluate the fractional exponent:


Example B

Simplify (4x^3 y) (3x^5 y^2 )^4  .


(4x^3 y) (3x^5 y^2 )^4&=(4x^3 y) (81x^{20} y^8 )\\ & =324x^{23}y^9

Example C

Simplify \left(\frac{x^{-2}y}{x^4y^3}\right)^{-2} .


\left(\frac{x^{-2}y}{x^4y^3}\right)^{-2}&=\left(\frac{x^4y^3}{x^{-2}y}\right)^{2}\\ &=(x^6y^2)^{2}\\ &=x^{12}y^4

Concept Problem Revisited

\frac{8x^3y^{-2}}{(-4x^2y^4)^{-2}}&=(8x^3y^{-2})(-4x^2y^4)^2\\&=(8x^3y^{-2})(16x^4y^8) \\ &=8\cdot 16 \cdot x^3 \cdot x^4 \cdot y^{-2} \cdot y^8\\ &=128x^7y^6


In an algebraic expression, the base is the variable, number, product or quotient, to which the exponent refers. Some examples are: In the expression 2^5 , ‘2’ is the base. In the expression (-3y)^4 , ‘ -3y ’ is the base.
In an algebraic expression, the exponent is the number to the upper right of the base that tells how many times to multiply the base times itself. Some examples are:
In the expression 2^5 , ‘5’ is the exponent. It means to multiply 2 times itself 5 times as shown here: 2^5=2 \times 2 \times 2 \times 2 \times 2 .
In the expression (-3y)^4 , ‘4’ is the exponent. It means to multiply -3y times itself 4 times as shown here: (-3y)^4=-3y \times -3y \times -3y \times -3y .
Laws of Exponents
The laws of exponents are the algebra rules and formulas that tell us the operation to perform on the exponents when dealing with exponential expressions.

Guided Practice

Use the laws of exponents to simplify each of the following:

1. (-2x)^5 (2x^2)

2. (16x^{10}) \left(\frac{3}{4}x^5\right)

3. \frac{(x^{15})(x^{24})(x^{25})}{(x^7)^8}


1. (-2x)^5 (2x^2)=(-32x^5)(2x^2)=-64x^7

2. (16x^{10}) \left(\frac{3}{4}x^5\right)=12x^{15}

3. \frac{(x^{15})(x^{24})(x^{25})}{(x^7)^8}=\frac{x^{64}}{x^{56}}=x^8


Simplify each expression.

  1. (x^{10}) (x^{10})
  2. (7x^3)(3x^7)
  3. (x^3 y^2) (xy^3) (x^5 y)
  4. \frac{(x^3)(x^2)}{(x^4)}
  5. \frac{x^2}{x^{-3}}
  6. \frac{x^6 y^8}{x^4 y^{-2}}
  7. (2x^{12})^3
  8. (x^5 y^{10})^7
  9. \left(\frac{2x^{10}}{3y^{20}}\right)^3

Express each of the following as a power of 3. Do not evaluate.

  1. (3^3)^5
  2. (3^9)(3^3)
  3. (9)(3^7)
  4. 9^4
  5. (9)(27^2)

Apply the laws of exponents to evaluate each of the following without using a calculator.

  1. (2^3)(2^2)
  2. 6^6 \div 6^5
  3. -(3^2)^3
  4. (1^2)^3+(1^3)^2
  5. \left(\frac{1}{3}\right)^6 \div \left(\frac{1}{3}\right)^8

Use the laws of exponents to simplify each of the following.

  1. (4x)^2
  2. (-3x)^3
  3. (x^3)^4
  4. (3x)(x^7)
  5. (5x)(4x^4)
  6. (-3x^2)(-6x^3)
  7. (10x^8) \div (2x^4)

Simplify each of the following using the laws of exponents.

  1. 5^{\frac{1}{2}} \times 5^{\frac{1}{3}}
  2. (d^4 e^8 f^{12})^{\frac{1}{4}}
  3. \sqrt[4]{\frac{y^{\frac{1}{2}} \sqrt{xy}}{x^{\frac{2}{3}}}}
  4. (32a^{20}b^{-15})^{\frac{1}{5}}
  5. (729x^{12}y^{-6})^{\frac{2}{3}}

Image Attributions

Explore More

Sign in to explore more, including practice questions and solutions for Evaluating Exponential Expressions.


Please wait...
Please wait...

Original text