<meta http-equiv="refresh" content="1; url=/nojavascript/">
Skip Navigation

Exponential Decay

Rational functions with x as an exponent in the denominator

Atoms Practice
Practice Exponential Decay
Practice Now
Exponential Decay Function

The population of a city was 10,000 in 2012 and is declining at a rate of 5% each year. If this decay rate continues, what will the city's population be in 2017?


In the last concept, we only addressed functions where \begin{align*}|b|>1\end{align*} . So, what happens when @$\begin{align*}b\end{align*}@$ is less than 1? Let’s analyze @$\begin{align*}y=\left(\frac{1}{2}\right)^x\end{align*}@$ .

Example A

Graph @$\begin{align*}y=\left(\frac{1}{2}\right)^x\end{align*}@$ and compare it to @$\begin{align*}y=2^x\end{align*}@$ .

Solution: Let’s make a table of both functions and then graph.

@$\begin{align*}x\end{align*}@$ @$\begin{align*}\left(\frac{1}{2}\right)^x\end{align*}@$ @$\begin{align*}2^x\end{align*}@$
3 @$\begin{align*}\left(\frac{1}{2}\right)^3 = \frac{1}{8}\end{align*}@$ @$\begin{align*}2^3=8\end{align*}@$
2 @$\begin{align*}\left(\frac{1}{2}\right)^2 = \frac{1}{4}\end{align*}@$ @$\begin{align*}2^2=4\end{align*}@$
1 @$\begin{align*}\left(\frac{1}{2}\right)^1 = \frac{1}{2}\end{align*}@$ @$\begin{align*}2^1=2\end{align*}@$
0 @$\begin{align*}\left(\frac{1}{2}\right)^0 = 1\end{align*}@$ @$\begin{align*}2^0=1\end{align*}@$
-1 @$\begin{align*}\left(\frac{1}{2}\right)^{-1} = 2\end{align*}@$ @$\begin{align*}2^{-1}=\frac{1}{2}\end{align*}@$
-2 @$\begin{align*}\left(\frac{1}{2}\right)^{-2} = 4\end{align*}@$ @$\begin{align*}2^{-2}=\frac{1}{4}\end{align*}@$
-3 @$\begin{align*}\left(\frac{1}{2}\right)^3 = 8\end{align*}@$ @$\begin{align*}2^{-3}=\frac{1}{8}\end{align*}@$

Notice that @$\begin{align*}y=\left(\frac{1}{2}\right)^x\end{align*}@$ is a reflection over the @$\begin{align*}y\end{align*}@$ -axis of @$\begin{align*}y=2^x\end{align*}@$ . Therefore, instead of exponential growth, the function @$\begin{align*}y=\left(\frac{1}{2}\right)^x\end{align*}@$ decreases exponentially, or exponentially decays . Anytime @$\begin{align*}b\end{align*}@$ is a fraction or decimal between zero and one, the exponential function will decay. And, just like an exponential growth function, and exponential decay function has the form @$\begin{align*}y=ab^x\end{align*}@$ and @$\begin{align*}a>0\end{align*}@$ . However, to be a decay function, @$\begin{align*}0 < b < 1\end{align*}@$ . The exponential decay function also has an asymptote at @$\begin{align*}y=0\end{align*}@$ .

Example B

Determine which of the following functions are exponential decay functions, exponential growth functions, or neither. Briefly explain your answer.

a) @$\begin{align*}y=4(1.3)^x\end{align*}@$

b) @$\begin{align*}f(x)=3 \left(\frac{6}{5}\right)^x\end{align*}@$

c) @$\begin{align*}y = \left(\frac{3}{10}\right)^x\end{align*}@$

d) @$\begin{align*}g(x)= -2(0.65)^x\end{align*}@$

Solution: a) and b) are exponential growth functions because @$\begin{align*}b>1\end{align*}@$ . c) is an exponential decay function because @$\begin{align*}b\end{align*}@$ is between zero and one. d) is neither growth or decay because @$\begin{align*}a\end{align*}@$ is negative.

Example C

Graph @$\begin{align*}g(x)=-2 \left(\frac{2}{3}\right)^{x-1}+1\end{align*}@$ . Find the @$\begin{align*}y\end{align*}@$ -intercept, asymptote, domain, and range.

Solution: To graph this function, you can either plug it into your calculator (entered Y= -2(2/3)^(X-1)+1) or graph @$\begin{align*}y=-2 \left(\frac{2}{3}\right)^x\end{align*}@$ and shift it to the right one unit and up one unit. We will use the second method; final answer is the blue function below.

The @$\begin{align*}y\end{align*}@$ -intercept is:

@$\begin{align*}y=-2 \left(\frac{2}{3}\right)^{0-1}+1=-2 \cdot \frac{3}{2}+1=-3+1=-2\end{align*}@$

The horizontal asymptote is @$\begin{align*}y=1\end{align*}@$ , the domain is all real numbers and the range is @$\begin{align*}y < 1\end{align*}@$ .

Intro Problem Revisit This is an example of exponential decay, so we can once again use the exponential form @$\begin{align*}f(x)=a \cdot b^{x-h}+k\end{align*}@$ , but we have to be careful. In this case, a = 10,000, the starting population, x-h = 5 the number of years, and k = 0, but b is a bit trickier. If the population is decreasing by 5%, each year the population is (1 - 5%) or (1 - 0.05) = 0.95 what it was the previous year. This is our b .

@$$\begin{align*}P = 10,000 \cdot 0.95^5\\ = 10,000 \cdot 0.7738 = 7738\end{align*}@$$

Therefore, the city's population in 2017 is 7,738.

Guided Practice

Graph the following exponential functions. Find the @$\begin{align*}y\end{align*}@$ -intercept, asymptote, domain, and range.

1. @$\begin{align*}f(x)=4 \left(\frac{1}{3}\right)^x\end{align*}@$

2. @$\begin{align*}y=-2 \left(\frac{2}{3}\right)^{x+3}\end{align*}@$

3. @$\begin{align*}g(x)= \left(\frac{3}{5}\right)^x-6\end{align*}@$

4. Determine if the following functions are exponential growth, exponential decay, or neither.

a) @$\begin{align*}y=2.3^x\end{align*}@$

b) @$\begin{align*}y=2 \left(\frac{4}{3}\right)^{-x}\end{align*}@$

c) @$\begin{align*}y=3\cdot 0.9^x\end{align*}@$

d) @$\begin{align*}y=\frac{1}{2} \left(\frac{4}{5}\right)^{x}\end{align*}@$


1. @$\begin{align*}y\end{align*}@$ -intercept: @$\begin{align*}(4, 0)\end{align*}@$ , asymptote: @$\begin{align*}y=0\end{align*}@$ , domain: all reals, range: @$\begin{align*}y < 0\end{align*}@$

2. @$\begin{align*}y\end{align*}@$ -intercept: @$\begin{align*}\left(0, -\frac{16}{27}\right)\end{align*}@$ , asymptote: @$\begin{align*}y=0\end{align*}@$ , domain: all reals, range: @$\begin{align*}y<0\end{align*}@$

3. @$\begin{align*}y\end{align*}@$ -intercept: @$\begin{align*}(-5, 0)\end{align*}@$ , asymptote: @$\begin{align*}y=-6\end{align*}@$ , domain: all reals, range: @$\begin{align*}y>-6\end{align*}@$

4. a) exponential growth

b) exponential decay; recall that a negative exponent flips whatever is in the base. @$\begin{align*}y=2 \left(\frac{4}{3}\right)^{-x}\end{align*}@$ is the same as @$\begin{align*}y=2 \left(\frac{3}{4} \right)^{x}\end{align*}@$ , which looks like our definition of a decay function.

c) exponential decay

d) neither; @$\begin{align*}a < 0\end{align*}@$

Explore More

Determine which of the following functions are exponential growth, exponential decay or neither.

  1. @$\begin{align*}y= -\left(\frac{2}{3}\right)^x\end{align*}@$
  2. @$\begin{align*}y= \left(\frac{4}{3}\right)^x\end{align*}@$
  3. @$\begin{align*}y=5^x\end{align*}@$
  4. @$\begin{align*}y= \left(\frac{1}{4}\right)^x\end{align*}@$
  5. @$\begin{align*}y= 1.6^x\end{align*}@$
  6. @$\begin{align*}y= -\left(\frac{6}{5}\right)^x\end{align*}@$
  7. @$\begin{align*}y= 0.99^x\end{align*}@$

Graph the following exponential functions. Find the @$\begin{align*}y\end{align*}@$ -intercept, the equation of the asymptote and the domain and range for each function.

  1. @$\begin{align*}y= \left(\frac{1}{2}\right)^x\end{align*}@$
  2. @$\begin{align*}y=(0.8)^{x+2}\end{align*}@$
  3. @$\begin{align*}y=4 \left(\frac{2}{3}\right)^{x-1}-5\end{align*}@$
  4. @$\begin{align*}y= -\left(\frac{5}{7}\right)^x +3\end{align*}@$
  5. @$\begin{align*}y= \left(\frac{8}{9}\right)^{x+5} -2\end{align*}@$
  6. @$\begin{align*}y=(0.75)^{x-2}+4\end{align*}@$
  7. Is the domain of an exponential function always all real numbers? Why or why not?
  8. A discount retailer advertises that items will be marked down at a rate of 10% per week until sold. The initial price of one item is $50.
    1. Write an exponential decay function to model the price of the item @$\begin{align*}x\end{align*}@$ weeks after it is first put on the rack.
    2. What will the price be after the item has been on display for 5 weeks?
    3. After how many weeks will the item be half its original price?


Exponential Decay Function

Exponential Decay Function

An exponential decay function is a specific type of exponential function that has the form y=ab^x, where a>0 and 0<b<1.
Exponential Function

Exponential Function

An exponential function is a function whose variable is in the exponent. The general form is y=a \cdot b^{x-h}+k.


A model is a mathematical expression or function used to describe a physical item or situation.

Image Attributions


Please wait...
Please wait...

Original text