<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation

Exponential Properties Involving Products

Add exponents to multiply exponents by other exponents

Atoms Practice
Estimated10 minsto complete
%
Progress
Practice Exponential Properties Involving Products
Practice
Progress
Estimated10 minsto complete
%
Practice Now
Recognize and Apply the Power of a Product Property

Let’s Think About It

Credit: Good Eye Might
Source: https://www.flickr.com/photos/brittanyg/1806831584/in/photolist-3KEu5G-pAPgVX-f5YdFB-fNH1u6-6cd27v-CH3be-6NW5EA-axEYF-2njXpT-M2XNT-aXCe1k-cySTns-5XCBv1-aMxdSv-4ePetQ-btuaDD-bWdW5e-cdDL49-6cd212-6cd2ez-7NvW4K-5xVNHi-76sa8K-cKuuey-7NvLz8-bkv8eF-bjTuzp-93Qn72-g65hyi-bjStLc-8ALjLc-aCqpSC-g63vob-g661un-g6629E-g657cX-aDPzGR-aDTho1-aCKNyk-aCoPtD-aCqAC9-aCkQio-aCkPnh-aChNAp-bkwtc4-bkewxk-bj1ftT-bktxQc-cC9cKf-bj1VgK
License: CC BY-NC 3.0

Simone is building a platform for the stage of the new band stand. She needs to determine the area of the platform so she can order the wood she needs. She knows the platform which has a side length of  will be square.

How can she find the area of the platform?

In this concept, you will learn to recognize and apply the power of a product property.

Guidance

When multiplying monomials, an exponent is applied to the constant, variable, or quantity that is directly to its left.

Let’s look at an example where the exponents can be applied to products using parentheses.

If you apply the exponent 4 to whatever is directly to its left, apply it to the parentheses, not just to the .

The parentheses are directly to the left of the 4. This indicates that the entire product in the parentheses is taken to the 4th power.

First, write  in expanded form.

Next, multiply the monomials by placing like factors next to each other, multiplying the coefficients, and simplifying using exponents.

This is the Power of a Product Property which says, for any nonzero numbers  and  and any integer :

Let’s look at an example.

Use the Power of a Product Property to expand .

First, expand the parentheses by multiplying  times itself, three times.

Next, multiply the monomials by placing like factors next to each other, multiplying the coefficients, and simplifying using exponents.

The answer is .

There is a definite pattern between the exponents and the final product. When you multiply like bases, there is a shortcut-add the exponents of like bases. Another way of saying it is:

Let’s look at another problem.

Use the Power of a Product Property to expand .

First, expand the parentheses by multiplying the base of  by itself, five times.

Next, multiply the monomials by placing like factors next to each other, multiplying the coefficients, and simplifying using exponents.

The answer is .

Guided Practice

Use the Power of a Product Property to expand .

First, expand the parentheses by multiplying  times itself, three times.

Next, multiply the monomials by placing like factors next to each other, multiplying the coefficients, and simplifying using exponents.

The answer is .

Examples

Simplify each monomial.

Example 1

Simplify the monomial .

First, expand the parentheses by multiplying  times itself, two times.

Next, multiply the monomials by placing like factors next to each other, multiplying the coefficients, and simplifying using exponents.

The answer is .

Example 2

Simplify the monomial .

First, expand the parentheses by multiplying the monomial times itself, three times.

Next, multiply the monomials by placing like factors next to each other, multiplying the coefficients, and simplifying using exponents.

The answer is .

Example 3

Simplify the monomial .

First, expand the parentheses by multiplying the monomial times itself, four times.

Next, multiply the monomials by placing like factors next to each other, multiplying the coefficients, and simplifying using exponents.

The answer is .

Follow Up

Credit: Jimmie
Source: https://www.flickr.com/photos/jimmiehomeschoolmom/6780507040/in/photolist-bkaSvN-8qA4o-4SZXjr-bnzi9-eo1MHr-vbEd1W-eo1Mv2-4PxYYf-9JWPfC-dRhRss-9nSiEh-5UdkcA-eoAvvG-bUBCP-9ghLo-by5Lfk-3nGCps-5nQgq4-oGAjqP-hBs5Nn-egVwzu-egVwu5-7GFdq-4RD5FS-7CuYEQ-47YWT1-9cjSiH-eoAw3s-8TxNN6-3sv7z-by5LsB-egVxjy-7mnuqJ-7JC4aQ-3nGCro-e5wbZZ-8TxNKp-8TxNHP-6CoSed-8PuJUU-8HUsuW-4Ge47a-aBHRSM-47YXib-7mnjTW-9cjSvz-egPKdr-bkaRWU-dgqsa8-bkaS3E
License: CC BY-NC 3.0

Remember Simone and the square platform? She needs to figure out the area of the platform to order the needed wood.

The side length of the square platform is .

First, set up the area of the square platform.

Next, expand the parentheses by multiplying the monomial times itself two times.

Then, multiply the monomials by placing like factors next to each other, multiplying the coefficients, and simplifying using exponents.

The answer is .

The area of the square platform is  units squared.

Video Review

https://www.youtube.com/watch?v=ssY1dFl7d30

Explore More

Simplify.

  1.  

Vocabulary

Base

Base

When a value is raised to a power, the value is referred to as the base, and the power is called the exponent. In the expression 32^4, 32 is the base, and 4 is the exponent.
Coefficient

Coefficient

A coefficient is the number in front of a variable.
Expanded Form

Expanded Form

Expanded form refers to a base and an exponent written as repeated multiplication.
Exponent

Exponent

Exponents are used to describe the number of times that a term is multiplied by itself.
Monomial

Monomial

A monomial is an expression made up of only one term.
Power

Power

The "power" refers to the value of the exponent. For example, 3^4 is "three to the fourth power".
Product of Powers Property

Product of Powers Property

The product of powers property states that a^m \cdot a^n = a^{m+n}.
Variable

Variable

A variable is a symbol used to represent an unknown or changing quantity. The most common variables are a, b, x, y, m, and n.

Explore More

Sign in to explore more, including practice questions and solutions for Exponential Properties Involving Products.

Reviews

Please wait...
Please wait...

Original text