<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation
Our Terms of Use (click here to view) have changed. By continuing to use this site, you are agreeing to our new Terms of Use.

Exponential Properties Involving Quotients

Subtract exponents to divide exponents by other exponents

Atoms Practice
Estimated11 minsto complete
%
Progress
Practice Exponential Properties Involving Quotients
Practice
Progress
Estimated11 minsto complete
%
Practice Now
Turn In
Exponential Properties Involving Quotients

Exponential Properties Involving Quotients 

The rules for simplifying quotients of exponents are a lot like the rules for simplifying products.

Let’s look at what happens when we divide x7 by x4:

x7x4=xxxxxxxxxxx=xxx1=x3

You can see that when we divide two powers of x, the number of x’s in the solution is the number of x’s in the top of the fraction minus the number of x’s in the bottom. In other words, when dividing expressions with the same base, we keep the same base and simply subtract the exponent in the denominator from the exponent in the numerator.

 

Quotient Rule for Exponents: xnxm=x(nm)

When we have expressions with more than one base, we apply the quotient rule separately for each base:

Now let’s see what happens if the exponent in the denominator is bigger than the exponent in the numerator. For example, what happens when we apply the quotient rule to x4x7?

The quotient rule tells us to subtract the exponents. 4 minus 7 is -3, so our answer is x3. A negative exponent! What does that mean?

x5y3x3y2=xxxxxxxxyyyyy=xx1y1=x2y

OR

x5y3x3y2=x53y32=x2y

Well, let’s look at what we get when we do the division longhand by writing each term in factored form:

x4x7=xxxxxxxxxxx=1xxx=1x3

Even when the exponent in the denominator is bigger than the exponent in the numerator, we can still subtract the powers. The x’s that are left over after the others have been canceled out just end up in the denominator instead of the numerator. Just as x7x4 would be equal to x31 (or simply x3), x4x7 is equal to 1x3. And you can also see that 1x3 is equal to x3. We’ll learn more about negative exponents shortly.

Simplifying Expressions 

Simplify the following expressions, leaving all exponents positive.

 

a) x2x6

Subtract the exponent in the numerator from the exponent in the denominator and leave the x’s in the denominator: x2x6=1x62=1x4

b) a2b6a5b

Apply the rule to each variable separately: a2b6a5b=1a52b611=b5a3

 

Examples

Simplify each of the following expressions using the quotient rule.

Example 1

 x10x5

x10x5=x105=x5

Example 2

a6a

a6a=a61=a5

Example 3

a5b4a3b2

c) a5b4a3b2=a53b42=a2b2

Review 

Evaluate the following expressions.

  1. 5652
  2. 6763
  3. 34310
  4. 223252
  5. 335237

Simplify the following expressions.

  1. a3a2
  2. x5x9
  3. x6y2x2y5
  4. 6a32a2
  5. 15x55x
  6. 25yx620y5x2

Review (Answers)

To view the Review answers, open this PDF file and look for section 8.3. 

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / Notes
Show More

Vocabulary

Base

When a value is raised to a power, the value is referred to as the base, and the power is called the exponent. In the expression 32^4, 32 is the base, and 4 is the exponent.

Exponent

Exponents are used to describe the number of times that a term is multiplied by itself.

Power

The "power" refers to the value of the exponent. For example, 3^4 is "three to the fourth power".

Image Attributions

Explore More

Sign in to explore more, including practice questions and solutions for Exponential Properties Involving Quotients.
Please wait...
Please wait...