<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Skip Navigation

Exponential Properties Involving Quotients

Subtract exponents to divide exponents by other exponents

Atoms Practice
Estimated9 minsto complete
Practice Exponential Properties Involving Quotients
This indicates how strong in your memory this concept is
Estimated9 minsto complete
Practice Now
Turn In
Exponential Properties Involving Quotients

Exponential Properties Involving Quotients 

The rules for simplifying quotients of exponents are a lot like the rules for simplifying products.

Let’s look at what happens when we divide \begin{align*}x^7\end{align*}x7 by \begin{align*}x^4\end{align*}:

\begin{align*} \frac{x^7}{x^4} = \frac{\cancel{x} \cdot \cancel{x} \cdot \cancel{x} \cdot \cancel{x} \cdot x \cdot x \cdot x}{\cancel{x} \cdot \cancel{x} \cdot \cancel{x} \cdot \cancel{x}} = \frac{x \cdot x \cdot x}{1} = x^3\end{align*}

You can see that when we divide two powers of \begin{align*}x\end{align*}, the number of \begin{align*}x\end{align*}’s in the solution is the number of \begin{align*}x\end{align*}’s in the top of the fraction minus the number of \begin{align*}x\end{align*}’s in the bottom. In other words, when dividing expressions with the same base, we keep the same base and simply subtract the exponent in the denominator from the exponent in the numerator.

Quotient Rule for Exponents: \begin{align*}\frac{x^n}{x^m} = x^{(n-m)}\end{align*}

When we have expressions with more than one base, we apply the quotient rule separately for each base:

Now let’s see what happens if the exponent in the denominator is bigger than the exponent in the numerator. For example, what happens when we apply the quotient rule to \begin{align*}\frac{x^4}{x^7}\end{align*}?

The quotient rule tells us to subtract the exponents. 4 minus 7 is -3, so our answer is \begin{align*}x^{-3}\end{align*}. A negative exponent! What does that mean?

\begin{align*}\frac{x^5y^3}{x^3y^2}=\frac{\cancel{x} \cdot \cancel{x} \cdot \cancel{x} \cdot x \cdot x}{\cancel{x} \cdot \cancel{x} \cdot \cancel{x}} \cdot \frac{\cancel{y} \cdot \cancel{y} \cdot y}{\cancel{y} \cdot \cancel{y}} = \frac{x \cdot x}{1} \cdot \frac{y}{1} = x^2y \end{align*}


\begin{align*}\frac{x^5y^3}{x^3y^2} = x^{5-3} \cdot y^{3-2} = x^2y\end{align*}

Well, let’s look at what we get when we do the division longhand by writing each term in factored form:

\begin{align*}\frac{x^4}{x^7} = \frac{\cancel{x} \cdot \cancel{x} \cdot \cancel{x} \cdot \cancel{x}}{\cancel{x} \cdot \cancel{x} \cdot \cancel{x} \cdot \cancel{x} \cdot x \cdot x \cdot x} = \frac{1}{x \cdot x \cdot x} = \frac{1}{x^3}\end{align*}

Even when the exponent in the denominator is bigger than the exponent in the numerator, we can still subtract the powers. The \begin{align*}x\end{align*}’s that are left over after the others have been canceled out just end up in the denominator instead of the numerator. Just as \begin{align*}\frac{x^7}{x^4}\end{align*} would be equal to \begin{align*}\frac{x^3}{1}\end{align*} (or simply \begin{align*}x^3\end{align*}), \begin{align*}\frac{x^4}{x^7}\end{align*} is equal to \begin{align*}\frac{1}{x^3}\end{align*}. And you can also see that \begin{align*}\frac{1}{x^3}\end{align*} is equal to \begin{align*}x^{-3}\end{align*}. We’ll learn more about negative exponents shortly.

Simplifying Expressions 

Simplify the following expressions, leaving all exponents positive.

a) \begin{align*}\frac{x^2}{x^6}\end{align*}

Subtract the exponent in the numerator from the exponent in the denominator and leave the \begin{align*}x\end{align*}’s in the denominator: \begin{align*}\frac{x^2}{x^6} = \frac{1}{x^{6-2}}= \frac{1}{x^4}\end{align*}

b) \begin{align*}\frac{a^2b^6}{a^5b}\end{align*}

Apply the rule to each variable separately: \begin{align*}\frac{a^2b^6}{a^5b} = \frac{1}{a^{5-2}} \cdot \frac{b^{6-1}}{1} = \frac{b^5}{a^3}\end{align*}


Simplify each of the following expressions using the quotient rule.

Example 1


\begin{align*}\frac{x^{10}}{x^5}= x^{10-5} = x^5\end{align*}

Example 2


\begin{align*}\frac{a^6}{a} = a^{6-1} =a^5\end{align*}

Example 3


c) \begin{align*}\frac{a^5b^4}{a^3b^2}= a^{5-3} \cdot b^{4-2} = a^2b^2\end{align*}


Evaluate the following expressions.

  1. \begin{align*}\frac{5^6}{5^2}\end{align*}
  2. \begin{align*}\frac{6^7}{6^3}\end{align*}
  3. \begin{align*}\frac{3^4}{3^{10}}\end{align*}
  4. \begin{align*}\frac{2^2 \cdot 3^2}{5^2}\end{align*}
  5. \begin{align*}\frac{3^3 \cdot 5^2}{3^7}\end{align*}

Simplify the following expressions.

  1. \begin{align*}\frac{a^3}{a^2}\end{align*}
  2. \begin{align*}\frac{x^5}{x^9}\end{align*}
  3. \begin{align*}\frac{x^6y^2}{x^2y^5}\end{align*}
  4. \begin{align*}\frac{6a^3}{2a^2}\end{align*}
  5. \begin{align*}\frac{15x^5}{5x}\end{align*}
  6. \begin{align*}\frac{25yx^6}{20y^5x^2}\end{align*}

Review (Answers)

To view the Review answers, open this PDF file and look for section 8.3. 

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / Notes
Show More


Base When a value is raised to a power, the value is referred to as the base, and the power is called the exponent. In the expression 32^4, 32 is the base, and 4 is the exponent.
Exponent Exponents are used to describe the number of times that a term is multiplied by itself.
Power The "power" refers to the value of the exponent. For example, 3^4 is "three to the fourth power".

Image Attributions

Explore More

Sign in to explore more, including practice questions and solutions for Exponential Properties Involving Quotients.
Please wait...
Please wait...