<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Skip Navigation
Our Terms of Use (click here to view) and Privacy Policy (click here to view) have changed. By continuing to use this site, you are agreeing to our new Terms of Use and Privacy Policy.

Exponential Properties Involving Quotients

Subtract exponents to divide exponents by other exponents

Atoms Practice
Estimated11 minsto complete
Practice Exponential Properties Involving Quotients
Estimated11 minsto complete
Practice Now
Exponential Properties Involving Quotients

What if you had a fractional expression like \begin{align*}\frac{x^5}{x^2}\end{align*}x5x2 in which both the numerator and denominator contained exponents? How could you simplify it? After completing this Concept, you'll be able to use the quotient of powers property to simplify exponential expressions like this one.

Watch This

CK-12 Foundation: 0803S Quotient of Powers


The rules for simplifying quotients of exponents are a lot like the rules for simplifying products.

Example A

Let’s look at what happens when we divide \begin{align*}x^7\end{align*}x7 by \begin{align*}x^4\end{align*}x4:

\begin{align*} \frac{x^7}{x^4} = \frac{\cancel{x} \cdot \cancel{x} \cdot \cancel{x} \cdot \cancel{x} \cdot x \cdot x \cdot x}{\cancel{x} \cdot \cancel{x} \cdot \cancel{x} \cdot \cancel{x}} = \frac{x \cdot x \cdot x}{1} = x^3\end{align*}x7x4=xxxxxxxxxxx=xxx1=x3

You can see that when we divide two powers of \begin{align*}x\end{align*}x, the number of \begin{align*}x\end{align*}x’s in the solution is the number of \begin{align*}x\end{align*}x’s in the top of the fraction minus the number of \begin{align*}x\end{align*}x’s in the bottom. In other words, when dividing expressions with the same base, we keep the same base and simply subtract the exponent in the denominator from the exponent in the numerator.

Quotient Rule for Exponents: \begin{align*}\frac{x^n}{x^m} = x^{(n-m)}\end{align*}xnxm=x(nm)

When we have expressions with more than one base, we apply the quotient rule separately for each base:

Now let’s see what happens if the exponent in the denominator is bigger than the exponent in the numerator. For example, what happens when we apply the quotient rule to \begin{align*}\frac{x^4}{x^7}\end{align*}x4x7?

The quotient rule tells us to subtract the exponents. 4 minus 7 is -3, so our answer is \begin{align*}x^{-3}\end{align*}x3. A negative exponent! What does that mean?

Example B

\begin{align*}\frac{x^5y^3}{x^3y^2}=\frac{\cancel{x} \cdot \cancel{x} \cdot \cancel{x} \cdot x \cdot x}{\cancel{x} \cdot \cancel{x} \cdot \cancel{x}} \cdot \frac{\cancel{y} \cdot \cancel{y} \cdot y}{\cancel{y} \cdot \cancel{y}} = \frac{x \cdot x}{1} \cdot \frac{y}{1} = x^2y \end{align*}x5y3x3y2=xxxxxxxxyyyyy=xx1y1=x2y


\begin{align*}\frac{x^5y^3}{x^3y^2} = x^{5-3} \cdot y^{3-2} = x^2y\end{align*}x5y3x3y2=x53y32=x2y

Well, let’s look at what we get when we do the division longhand by writing each term in factored form:

\begin{align*}\frac{x^4}{x^7} = \frac{\cancel{x} \cdot \cancel{x} \cdot \cancel{x} \cdot \cancel{x}}{\cancel{x} \cdot \cancel{x} \cdot \cancel{x} \cdot \cancel{x} \cdot x \cdot x \cdot x} = \frac{1}{x \cdot x \cdot x} = \frac{1}{x^3}\end{align*}x4x7=xxxxxxxxxxx=1xxx=1x3

Even when the exponent in the denominator is bigger than the exponent in the numerator, we can still subtract the powers. The \begin{align*}x\end{align*}x’s that are left over after the others have been canceled out just end up in the denominator instead of the numerator. Just as \begin{align*}\frac{x^7}{x^4}\end{align*}x7x4 would be equal to \begin{align*}\frac{x^3}{1}\end{align*}x31 (or simply \begin{align*}x^3\end{align*}x3), \begin{align*}\frac{x^4}{x^7}\end{align*}x4x7 is equal to \begin{align*}\frac{1}{x^3}\end{align*}1x3. And you can also see that \begin{align*}\frac{1}{x^3}\end{align*}1x3 is equal to \begin{align*}x^{-3}\end{align*}x3. We’ll learn more about negative exponents shortly.

Example C

Simplify the following expressions, leaving all exponents positive.

a) \begin{align*}\frac{x^2}{x^6}\end{align*}x2x6

b) \begin{align*}\frac{a^2b^6}{a^5b}\end{align*}a2b6a5b


a) Subtract the exponent in the numerator from the exponent in the denominator and leave the \begin{align*}x\end{align*}x’s in the denominator: \begin{align*}\frac{x^2}{x^6} = \frac{1}{x^{6-2}}= \frac{1}{x^4}\end{align*}x2x6=1x62=1x4

b) Apply the rule to each variable separately: \begin{align*}\frac{a^2b^6}{a^5b} = \frac{1}{a^{5-2}} \cdot \frac{b^{6-1}}{1} = \frac{b^5}{a^3}\end{align*}a2b6a5b=1a52b611=b5a3

Watch this video for help with the Examples above.

CK-12 Foundation: Quotient of Powers

Guided Practice

Simplify each of the following expressions using the quotient rule.

a) \begin{align*}\frac{x^{10}}{x^5}\end{align*}x10x5

b) \begin{align*}\frac{a^6}{a}\end{align*}a6a

c) \begin{align*}\frac{a^5b^4}{a^3b^2}\end{align*}a5b4a3b2


a) \begin{align*}\frac{x^{10}}{x^5}= x^{10-5} = x^5\end{align*}x10x5=x105=x5

b) \begin{align*}\frac{a^6}{a} = a^{6-1} =a^5\end{align*}a6a=a61=a5

c) \begin{align*}\frac{a^5b^4}{a^3b^2}= a^{5-3} \cdot b^{4-2} = a^2b^2\end{align*}a5b4a3b2=a53b42=a2b2

Review Questions

Evaluate the following expressions.

  1. \begin{align*}\frac{5^6}{5^2}\end{align*}5652
  2. \begin{align*}\frac{6^7}{6^3}\end{align*}6763
  3. \begin{align*}\frac{3^4}{3^{10}}\end{align*}34310
  4. \begin{align*}\frac{2^2 \cdot 3^2}{5^2}\end{align*}223252
  5. \begin{align*}\frac{3^3 \cdot 5^2}{3^7}\end{align*}

Simplify the following expressions.

  1. \begin{align*}\frac{a^3}{a^2}\end{align*}
  2. \begin{align*}\frac{x^5}{x^9}\end{align*}
  3. \begin{align*}\frac{x^6y^2}{x^2y^5}\end{align*}
  4. \begin{align*}\frac{6a^3}{2a^2}\end{align*}
  5. \begin{align*}\frac{15x^5}{5x}\end{align*}
  6. \begin{align*}\frac{25yx^6}{20y^5x^2}\end{align*}

Answers for Explore More Problems

To view the Explore More answers, open this PDF file and look for section 8.3. 



When a value is raised to a power, the value is referred to as the base, and the power is called the exponent. In the expression 32^4, 32 is the base, and 4 is the exponent.


Exponents are used to describe the number of times that a term is multiplied by itself.


The "power" refers to the value of the exponent. For example, 3^4 is "three to the fourth power".

Image Attributions

Explore More

Sign in to explore more, including practice questions and solutions for Exponential Properties Involving Quotients.
Please wait...
Please wait...