<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />

# Exponential Properties Involving Quotients

## Subtract exponents to divide exponents by other exponents

Estimated11 minsto complete
%
Progress
Practice Exponential Properties Involving Quotients
Progress
Estimated11 minsto complete
%
Quotient Rules for Exponents

Suppose you have the expression:

\begin{align*}\frac{x\cdot x \cdot x \cdot x \cdot x \cdot x \cdot x \cdot x \cdot x \cdot y \cdot y \cdot y \cdot y \cdot y}{x\cdot x \cdot x \cdot x \cdot x \cdot x \cdot y \cdot y \cdot y}\end{align*}

How could you write this expression in a more concise way?

### Watch This

James Sousa: Simplify Exponential Expressions- Quotient Rule

### Guidance

In the expression \begin{align*}x^3\end{align*}, the \begin{align*}x\end{align*} is called the base and the \begin{align*}3\end{align*} is called the exponent. Exponents are often referred to as powers. When an exponent is a positive whole number, it tells you how many times to multiply the base by itself. For example:

• \begin{align*}x^3=x\cdot x \cdot x\end{align*}
• \begin{align*}2^4=2\cdot 2 \cdot 2 \cdot 2=16\end{align*}.

There are many rules that have to do with exponents (often called the Laws of Exponents) that are helpful to know so that you can work with expressions and equations that involve exponents more easily. Here you will learn two rules that have to do with exponents and quotients.

RULE: To divide two powers with the same base, subtract the exponents.

RULE: To raise a quotient to a power, raise both the numerator and the denominator to the power.

#### Example A

Simplify \begin{align*}2^7 \div 2^3\end{align*}.

Solution:

The answer can be taken one step further. The base is numerical so the term can be evaluated.

#### Example B

Simplify \begin{align*}\frac{x^8}{x^2}\end{align*}.

Solution:

#### Example C

Simplify \begin{align*}\frac{16x^5 y^5}{4x^2 y^3}\end{align*}.

Solution:

#### Concept Problem Revisited

\begin{align*}\frac{x\cdot x \cdot x \cdot x \cdot x \cdot x \cdot x \cdot x \cdot x \cdot y \cdot y \cdot y \cdot y \cdot y}{x\cdot x \cdot x \cdot x \cdot x \cdot x \cdot y \cdot y \cdot y}\end{align*} can be rewritten as \begin{align*}\frac{x^9y^5}{x^6y^3}\end{align*} and then simplified to \begin{align*}x^3y^2\end{align*}.

### Vocabulary

Base
In an algebraic expression, the base is the variable, number, product or quotient, to which the exponent refers. Some examples are: In the expression \begin{align*}2^5\end{align*}, ‘2’ is the base. In the expression \begin{align*}(-3y)^4\end{align*}, ‘\begin{align*}-3y\end{align*}’ is the base.
Exponent
In an algebraic expression, the exponent is the number to the upper right of the base that tells how many times to multiply the base times itself. Some examples are:
In the expression \begin{align*}2^5\end{align*}, ‘5’ is the exponent. It means to multiply 2 times itself 5 times as shown here: \begin{align*}2^5=2 \times 2 \times 2 \times 2 \times 2\end{align*}.
In the expression \begin{align*}(-3y)^4\end{align*}, ‘4’ is the exponent. It means to multiply \begin{align*}-3y\end{align*} times itself 4 times as shown here: \begin{align*}(-3y)^4=-3y \times -3y \times -3y \times -3y\end{align*}.
Laws of Exponents
The laws of exponents are the algebra rules and formulas that tell us the operation to perform on the exponents when dealing with exponential expressions.

### Guided Practice

Simplify each of the following expressions.

1. \begin{align*}\left(\frac{2}{3}\right)^2\end{align*}

2. \begin{align*}\left(\frac{x}{6}\right)^3\end{align*}

3. \begin{align*}\left(\frac{3x}{4y}\right)^2\end{align*}

1. \begin{align*}\left(\frac{2}{3}\right)^2=\frac{2^2}{3^2}=\frac{4}{9}\end{align*}

2. \begin{align*}\left(\frac{x}{6}\right)^3=\frac{x^3}{6^3}=\frac{x^3}{216}\end{align*}

3. \begin{align*}\left(\frac{3x}{4y}\right)^2=\frac{3^2x^2}{4^2y^2}=\frac{9x^2}{16y^2}\end{align*}

### Practice

Simplify each of the following expressions, if possible.

1. \begin{align*}\left(\frac{2}{5}\right)^6\end{align*}
2. \begin{align*}\left(\frac{4}{7}\right)^3\end{align*}
3. \begin{align*}\left(\frac{x}{y}\right)^4\end{align*}
4. \begin{align*}\frac{20x^4y^5}{5x^2y^4}\end{align*}
5. \begin{align*}\frac{42x^2y^8z^2}{6xy^4z}\end{align*}
6. \begin{align*}\left(\frac{3x}{4y}\right)^3\end{align*}
7. \begin{align*}\frac{72x^2y^4}{8x^2y^3}\end{align*}
8. \begin{align*}\left(\frac{x}{4}\right)^5\end{align*}
9. \begin{align*}\frac{24x^{14}y^8}{3x^5y^7}\end{align*}
10. \begin{align*}\frac{72x^3y^9}{24xy^6}\end{align*}
11. \begin{align*}\left(\frac{7}{y}\right)^3\end{align*}
12. \begin{align*}\frac{20x^{12}}{-5x^8}\end{align*}
1. Simplify using the laws of exponents: \begin{align*}\frac{2^3}{2^5}\end{align*}
2. Evaluate the numerator and denominator separately and then simplify the fraction: \begin{align*}\frac{2^3}{2^5}\end{align*}
3. Use your result from the previous problem to determine the value of \begin{align*}a\end{align*}: \begin{align*}\frac{2^3}{2^5}=\frac{1}{2^{a}}\end{align*}
4. Use your results from the previous three problems to help you evaluate \begin{align*}2^{-4}\end{align*}.

### Answers for Explore More Problems

To view the Explore More answers, open this PDF file and look for section 6.2.

### Vocabulary Language: English

Base

Base

When a value is raised to a power, the value is referred to as the base, and the power is called the exponent. In the expression $32^4$, 32 is the base, and 4 is the exponent.
Exponent

Exponent

Exponents are used to describe the number of times that a term is multiplied by itself.
Power

Power

The "power" refers to the value of the exponent. For example, $3^4$ is "three to the fourth power".