<meta http-equiv="refresh" content="1; url=/nojavascript/">
Skip Navigation

Factoring by Grouping

Practice Factoring by Grouping
Practice Now
Factoring by Grouping

The volume of a rectangular prism is 3x^5 - 27x^4 - 2x^2 + 18x . What are the lengths of the prism's sides?

Watch This

James Sousa: Factor By Grouping


In the Factoring when the Leading Coefficient Doesn't Equal 1 concept, we introduced factoring by grouping. We will expand this idea to other polynomials here.

Example A

Factor x^4+7x^3-8x-56 by grouping.

Solution: First, group the first two and last two terms together. Pull out any common factors.


Notice what is inside the parenthesis is the same . This should always happen when factoring by grouping. Pull out this common factor.

& x^3(x+7)-8(x+7)\\& (x+7)(x^3-8)

Look at the factors. Can they be factored any further? Yes. The second factor is a difference of cubes. Use the formula.

& (x+7)(x^3-8)\\& (x+7)(x-2)(x^2+2x+4)

Example B

Factor x^3+5x^2-x-5 by grouping.

Solution: Follow the steps from above.

& x^3+5x^2-x-5\\& x^2(x+5)-1(x+5)\\& (x+5)(x^2-1)

Look to see if we can factor either factor further. Yes, the second factor is a difference of squares.

& (x+5)(x^2-1)\\&(x+5)(x-1)(x+1)

Example C

Find all real-number solutions of 2x^3-3x^2+8x-12 = 0 .

Solution: Follow the steps from Example A.

2x^3-3x^2+8x-12 &= 0\\x^2(2x-3)+4(2x-3) &= 0\\(2x-3)(x^2+4) &= 0

Now, determine if you can factor further. No, x^2+4 is a sum of squares and not factorable. Setting the first factor equal to zero, we get x = \frac{3}{2} .

Intro Problem Revisit

We need to factor 3x^5 - 27x^4 - 2x^2 + 18x to find the lengths of the prism's sides.

First, pull out the common factor. x(3x^4 - 27x^3 - 2x + 18)

Next, factor (3x^4 - 27x^3 - 2x + 18) by grouping the first two and last two terms together.

(3x^4 - 27x^3 - 2x + 18)\\= (3x^4 - 27x^3) + (- 2x + 18)\\= 3x^3(x - 9) - 2(x - 9)

Now pull out the common factor.

3x^3(x - 9) - 2(x - 9)\\= (3x^3 - 2)(x - 9)

The expression can't be factored further, so 3x^5 - 27x^4 - 2x^2 + 18x = x(3x^3 - 2)(x - 9) and the lengths of the sides of the rectangular prism are x , 3x^3 - 2 , and x - 9 .

Guided Practice

Factor the following polynomials by grouping.

1. x^3+7x^2-2x-14

2. 2x^4-5x^3+2x-5

3. Find all the real-number solutions of 4x^3-8x^2-x+2 = 0 .


Each of these problems is done in the same way: Group the first two and last two terms together, pull out any common factors, what is inside the parenthesis is the same, factor it out, then determine if either factor can be factored further.

1. & x^3+7x^2-2x-14\\& x^2(x+7)-2(x+7)\\& (x+7)(x^2-2)

x^2-2 is not a difference of squares because 2 is not a square number. Therefore, this cannot be factored further.

2. & 2x^4-5x^3+2x-5\\& x^3(2x-5)+1(2x-5)\\& (2x-5)(x^3+1) \quad \ \ \text{Sum of cubes, factor further}.\\& (2x-5)(x+1)(x^2+x+1)

3. Factor by grouping.

4x^3-8x^2-x+2 &= 0\\4x^2(x-2)-1(x-2) &= 0\\(x-2)(4x^2-1) &= 0\\(x-2)(2x-1)(2x+1) &= 0\\x & = 2, \frac{1}{2}, -\frac{1}{2}

Explore More

Factor the following polynomials using factoring by grouping. Factor each polynomial completely.

  1. x^3-4x^2+3x-12
  2. x^3+6x^2-9x-54
  3. 3x^3-4x^2+15x-20
  4.  2x^4-3x^3-16x+24
  5. 4x^3+4x^2-25x-25
  6. 4x^3+18x^2-10x-45
  7. 24x^4-40x^3+81x-135
  8. 15x^3+6x^2-10x-4
  9. 4x^3+5x^2-100x-125
  10. 3x^3-2x^2+12x-8

Find all the real-number solutions of the polynomials below.

  1. 9x^3-54x^2-4x+24 = 0
  2. x^4+3x^3-27x-81 = 0
  3. x^3-2x^2-4x+8 = 0
  4. Challenge Find ALL the solutions of x^6-9x^4-x^2+9 = 0 .
  5. Challenge Find ALL the solutions of x^3+3x^2+16x+48 = 0 .


Factor by Grouping

Factor by Grouping

Factoring by grouping is a method of factoring a polynomial by factoring common monomials from groups of terms.
Grouping Symbols

Grouping Symbols

Grouping symbols are parentheses or brackets used to group numbers and operations.


Volume is the amount of space inside the bounds of a three-dimensional object.

Image Attributions

Explore More

Sign in to explore more, including practice questions and solutions for Factoring by Grouping.


Please wait...
Please wait...

Original text