What if you had a quadratic expression like in which one square term were subtracted from another? How could you factor that expression? After completing this Concept, you'll be able to factor the difference of two squares like this one.
Watch This
CK-12 Foundation: 0910S Factoring the Difference of Squares
Guidance
When you learned how to multiply binomials we talked about two special products.
In this section we’ll learn how to recognize and factor these special products.
Factor the Difference of Two Squares
We use the sum and difference formula to factor a difference of two squares. A difference of two squares is any quadratic polynomial in the form , where and can be variables, constants, or just about anything else. The factors of are always ; the key is figuring out what the and terms are.
Example A
Factor the difference of squares:
a)
b)
c)
Solution
a) Rewrite as . Now it is obvious that it is a difference of squares.
The difference of squares formula is:
Let’s see how our problem matches with the formula:
The answer is:
We can check to see if this is correct by multiplying :
The answer checks out.
Note: We could factor this polynomial without recognizing it as a difference of squares. With the methods we learned in the last section we know that a quadratic polynomial factors into the product of two binomials:
We need to find two numbers that multiply to -9 and add to 0 (since there is no term, that’s the same as if the term had a coefficient of 0). We can write -9 as the following products:
We can factor as , which is the same answer as before. You can always factor using the methods you learned in the previous section, but recognizing special products helps you factor them faster.
b) Rewrite as . This factors as .
c) Rewrite as . This factors as .
Example B
Factor the difference of squares:
a)
b)
c)
Solution
a) Rewrite as . This factors as .
b) Rewrite as . This factors as .
c) Rewrite as . This factors as .
Example C
Factor the difference of squares:
a)
b)
c)
Solution
a) factors as .
b) Rewrite as . This factors as .
c) Rewrite as . This factors as .
Watch this video for help with the Examples above.
CK-12 Foundation: Factoring the Difference of Squares
Vocabulary
- The difference of two squares has the form
.
Guided Practice
Factor the difference of squares:
a)
b)
c)
Solution
a) Rewrite as . This factors as .
b) Rewrite as . This factors as .
c) Rewrite as . This factors as .
Practice
Factor the following differences of squares.