<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
You are viewing an older version of this Concept. Go to the latest version.

# Fractional Exponents

## Relate fractional exponents to nth roots

0%
Progress
Practice Fractional Exponents
Progress
0%
Fractional Exponents

If an exponent usually tells you the number of times to multiply the base by itself, what does it mean if the exponent is a fraction? How can you think about and calculate 432\begin{align*}4^{\frac{3}{2}}\end{align*}?

### Guidance

A fraction exponent is related to a root. Raising a number to the power of 12\begin{align*}\frac{1}{2}\end{align*} is the same as taking the square root of the number. If you have amn\begin{align*}a^{\frac{m}{n}}\end{align*}, you can think about this expression in multiple ways:

amn=(am)1noramn=(a1n)m

amn=amnoramn=(an)m

All of these ideas can be summarized as the following rule for fractional exponents:

amn=amn=(an)m m,nN

#### Example A

Simplify the following:

(125)23\begin{align*}(125)^{-\frac{2}{3}}\end{align*}

Solution:

(125)231125231(1253)2Apply the law of exponents for negative exponents am=1am.Apply the law of exponents for rational exponents amn=amn=(an)m m,nN.

The cube root of 125 is ‘5’.

\begin{align*}\frac{1}{{\color{red}5}^2}\end{align*}

Evaluate the denominator.

#### Example B

Simplify the following:

\begin{align*}(2a^2b^4)^{\frac{3}{2}}\end{align*}

Solution:

#### Example C

i) \begin{align*}2^{\frac{3}{8}}\end{align*}

ii) \begin{align*}7^{-\frac{1}{5}}\end{align*}

iii) \begin{align*}3^{\frac{3}{4}}\end{align*}

Solutions:

i) \begin{align*}2^{\frac{3}{8}}=\sqrt[{\color{red}8}]{2^{\color{red}3}}=\sqrt[{\color{red}8}]{8}\end{align*}

ii) \begin{align*}7^{-\frac{1}{5}}=\frac{1}{\sqrt[{\color{red}5}]{7}}\end{align*}

iii) \begin{align*}3^{\frac{3}{4}}=\sqrt[{\color{red}4}]{3^{\color{red}3}}=\sqrt[{\color{red}4}]{27}\end{align*}

#### Example D

State the following using exponents:

i) \begin{align*}\sqrt[3]{7^2}\end{align*}

ii) \begin{align*}\frac{1}{\left(\sqrt[4]{5}\right)^3}\end{align*}

iii) \begin{align*}\left(\sqrt[5]{a}\right)^2\end{align*}

Solutions:

i) \begin{align*}\sqrt[3]{7^2}=7^{\color{red}\frac{2}{3}}\end{align*}

ii)

iii) \begin{align*}\left(\sqrt[5]{a}\right)^2=a^{\color{red}\frac{2}{5}}\end{align*}

#### Concept Problem Revisited

\begin{align*}4^{\frac{3}{2}}=(\sqrt{4})^3=2^3=8\end{align*}

### Vocabulary

Base
In an algebraic expression, the base is the variable, number, product or quotient, to which the exponent refers. Some examples are: In the expression \begin{align*}2^5\end{align*}, ‘2’ is the base. In the expression \begin{align*}(-3y)^4\end{align*}, ‘\begin{align*}-3y\end{align*}’ is the base.
Exponent
In an algebraic expression, the exponent is the number to the upper right of the base that tells how many times to multiply the base times itself. Some examples are:
In the expression \begin{align*}2^5\end{align*}, ‘5’ is the exponent. It means to multiply 2 times itself 5 times as shown here: \begin{align*}2^5=2 \times 2 \times 2 \times 2 \times 2\end{align*}.
In the expression \begin{align*}(-3y)^4\end{align*}, ‘4’ is the exponent. It means to multiply \begin{align*}-3y\end{align*} times itself 4 times as shown here: \begin{align*}(-3y)^4=-3y \times -3y \times -3y \times -3y\end{align*}.
Laws of Exponents
The laws of exponents are the algebra rules and formulas that tell us the operation to perform on the exponents when dealing with exponential expressions.

### Guided Practice

1. Use the laws of exponents to evaluate the following: \begin{align*}9^{\frac{3}{2}} \div 36^{-\frac{1}{2}}\end{align*}

2. Simplify the following using the laws of exponents. \begin{align*}(20a^2b^3c^{-1})^{\frac{3}{2}}\end{align*}

3. Use the laws of exponents to evaluate the following: \begin{align*}\frac{64^{\frac{2}{3}}}{216^{-\frac{1}{3}}}\end{align*}

1. \begin{align*}9^{\frac{3}{2}} \div 36^{-\frac{1}{2}}\end{align*}

2.

3. \begin{align*}\frac{64^{\frac{2}{3}}}{216^{-\frac{1}{3}}}\end{align*}.

Numerator divided by denominator:

### Practice

Express each of the following as a radical and if possible, simplify.

1. \begin{align*}x^{\frac{1}{2}}\end{align*}
2. \begin{align*}5^{\frac{3}{4}}\end{align*}
3. \begin{align*}2^{\frac{3}{2}}\end{align*}
4. \begin{align*}2^{-\frac{1}{2}}\end{align*}
5. \begin{align*}9^{-\frac{1}{5}}\end{align*}

Express each of the following using exponents:

1. \begin{align*}\sqrt{26}\end{align*}
2. \begin{align*}\sqrt[3]{5^2}\end{align*}
3. \begin{align*}\left(\sqrt[6]{a}\right)^5\end{align*}
4. \begin{align*}\sqrt[4]{m}\end{align*}
5. \begin{align*}\left(\sqrt[3]{7}\right)^2\end{align*}

Evaluate each of the following using the laws of exponents:

1. \begin{align*}3^{\frac{2}{5}} \times 3^{\frac{3}{5}}\end{align*}
2. \begin{align*}(6^{0.4})^5\end{align*}
3. \begin{align*}2^{\frac{1}{7}} \times 4^{\frac{3}{7}}\end{align*}
4. \begin{align*}\left(\frac{64}{125}\right)^{-\frac{1}{2}}\end{align*}
5. \begin{align*}(81^{-1})^{-\frac{1}{4}}\end{align*}