<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />

# Graphs of Absolute Value Inequalities

## Visually identify solutions to inequalities containing absolute values

Estimated6 minsto complete
%
Progress
Practice Graphs of Absolute Value Inequalities
Progress
Estimated6 minsto complete
%
Graphical Solutions to Absolute Value Inequalities

Solve the following inequality and graph the solution on a number line.

\begin{align*}|x+2|\le 3\end{align*}

### Watch This

Khan Academy Absolute Value Inequalities on a Number Line

### Guidance

Recall that you can graph linear inequalities on number lines. For \begin{align*}x > 5\end{align*}, the graph can be shown as:

Notice that there is only one solution set and therefore one section of the number line has the region shown in red.

What do you think would happen with absolute value linear inequalities? With absolute value linear inequalities, there are two inequalities to solve. Therefore there can be two sections of the number line showing solutions.

For \begin{align*}|t|>5\end{align*}, you would actually solve for \begin{align*}t > 5\end{align*} and \begin{align*}t <-5\end{align*}. If you were to graph this solution on a number line it would look like the following:

The solution is \begin{align*} t>5\end{align*} OR \begin{align*}t<-5\end{align*}.

For \begin{align*}|t|<5\end{align*}, you would actually solve for \begin{align*}t < 5\end{align*} and \begin{align*}t >-5\end{align*}. If you were to graph this solution on a number line it would look like the following:

The solution is \begin{align*} -5. This is the same as \begin{align*}t<5\end{align*} AND \begin{align*}t>-5\end{align*}.

Graphing the solution set to an absolute value linear inequality gives you the same visual representation as you had when graphing the solution set to linear inequalities. The same rules apply when graphing absolute values of linear inequalities on a real number line. Once the solution is found, the open circle is used for absolute value inequalities containing the symbols > and <. The closed circle is used for absolute value inequalities containing the symbols \begin{align*}\le\end{align*} and \begin{align*}\ge\end{align*}.

#### Example A

Represent the solution set to the following inequality on a number line: \begin{align*}|2x|\ge 6\end{align*}.

Solution: First solve the inequality. Then, represent your solution on a number line.

The solution sets are \begin{align*}x \ge 3\end{align*} OR \begin{align*} x \le -3\end{align*}.

#### Example B

Solve the following inequality and graph the solution on a number line: \begin{align*}|x+1|>3\end{align*}

Solution: First solve the inequality. Then, represent your solution on a number line.

The solution sets are \begin{align*}x>2\end{align*}, OR \begin{align*}x<-4\end{align*}.

#### Example C

Solve the following inequality and graph the solution on a number line: \begin{align*}\bigg |x-\frac{5}{2} \bigg | < 1\end{align*}

Solution: First solve the inequality. Then, represent your solution on a number line.

The solution is \begin{align*}\frac{3}{2}.

#### Concept Problem Revisited

Solve the following inequality and graph the solution on a number line.

\begin{align*}|x+2|\le 3\end{align*}

First solve the inequality:

The solution is \begin{align*}-5 \le x \le 1\end{align*}.

Representing on a number line:

### Vocabulary

Absolute Value Linear Inequality
Absolute Value Linear inequalities can have one of four forms: \begin{align*}|ax + b| > c, |ax + b| < c, |ax + b| \ge c\end{align*}, or \begin{align*}|ax + b| \le c\end{align*}. Absolute value linear inequalities have two related inequalities. For example for \begin{align*}|ax+b|>c\end{align*}, the two related inequalities are \begin{align*}ax + b > c\end{align*} and \begin{align*}ax + b < -c\end{align*}.
Number Line
A number line is a line that matches a set of points and a set of numbers one to one.

### Guided Practice

1. Represent the solution set to the inequality \begin{align*}|2x+3|>5\end{align*} on a number line.

2. Represent the solution set to the inequality \begin{align*}|32x-16| \ge 32\end{align*} on a number line.

3. Represent the solution set to the inequality \begin{align*}|x-21.5|>12.5\end{align*} on a number line.

1. \begin{align*}|2x+3| >5\end{align*}

The solution sets are \begin{align*}x>1\end{align*} or \begin{align*}x<-4\end{align*}.

2. \begin{align*}|32x-16| \ge 32\end{align*}

The solution sets are \begin{align*}x \ge \frac{3}{2}\end{align*} or \begin{align*} x \le -\frac{1}{2}\end{align*}.

3. \begin{align*}|x-21.5|>12.5\end{align*}

The solution sets are \begin{align*}x<9\end{align*} or \begin{align*}x>34\end{align*}.

### Practice

Represent the solution sets to each absolute value inequality on a number line.

1. \begin{align*}|3-2x|<3\end{align*}
2. \begin{align*}2\big|\frac{2x}{3}+1\big|\ge 4\end{align*}
3. \begin{align*}\big|\frac{2g-9}{4}\big|<1\end{align*}
4. \begin{align*}\big|\frac{4}{3}x-5\big|\ge 7\end{align*}
5. \begin{align*}|2x+5|+4 \ge 7\end{align*}
6. \begin{align*}|p-16|>10\end{align*}
7. \begin{align*}|r+2|<5\end{align*}
8. \begin{align*}|3-2k|\ge 1\end{align*}
9. \begin{align*}|8-y|>5\end{align*}
10. \begin{align*}8 \ge |5d-2|\end{align*}
11. \begin{align*}|s+2|-5>8\end{align*}
12. \begin{align*}|10+8w|-2<16\end{align*}
13. \begin{align*}|2q+1|-5 \le 7\end{align*}
14. \begin{align*}\big |\frac{1}{3}(g-2) \big |<4\end{align*}
15. \begin{align*}|-2(e+4)|>17\end{align*}

### Answers for Explore More Problems

To view the Explore More answers, open this PDF file and look for section 2.15.

### Vocabulary Language: English

Absolute Value Linear inequalities

Absolute Value Linear inequalities

Absolute value linear inequalities can have one of four forms $|ax + b| > c, |ax + b| < c, |ax + b| \ge c$, or $|ax + b| \le c$. Absolute value linear inequalities have two related inequalities. For example for $|ax+b|>c$, the two related inequalities are $ax + b > c$ and $ax + b < -c$.
number line

number line

A number line is a line on which numbers are marked at intervals. Number lines are often used in mathematics to show mathematical computations.

1. [1]^ License: CC BY-NC 3.0
2. [2]^ License: CC BY-NC 3.0
3. [3]^ License: CC BY-NC 3.0
4. [4]^ License: CC BY-NC 3.0
5. [5]^ License: CC BY-NC 3.0
6. [6]^ License: CC BY-NC 3.0
7. [7]^ License: CC BY-NC 3.0
8. [8]^ License: CC BY-NC 3.0
9. [9]^ License: CC BY-NC 3.0
10. [10]^ License: CC BY-NC 3.0
11. [11]^ License: CC BY-NC 3.0

### Explore More

Sign in to explore more, including practice questions and solutions for Graphs of Absolute Value Inequalities.