<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />

# Graphs of Linear Equations

## Graph lines presented in ax+by = c form

0%
Progress
Practice Graphs of Linear Equations
Progress
0%
Using Tables to Graph Functions

Credit: James Lunb
Source: https://www.flickr.com/photos/james_lumb/5588323268/in/photolist-9vPBPb-9Q95mZ-7SBWGP-9VEe91-a7t6kp-2fBBJk-aRXJ8H-5c8ion-82yDAo-4KxUWx-7iUYqS-9GTB3R-9GTAWD-bEZXyC-3C9hyQ-8wnnUE-52vtfG-dUPBza-4FiXfu-5vnzmD-8x1f5h-8x1frU-Nmwea-oYaqrs-9GWtrS-rNCY8q-ibSRP6-8fQgmA-95aWiF-8x1fQf-8bYMiB-8wXh7D-5sgVFh-6s1a7D-9sSQK4-9t48Kz-9is7SR-6w6MQK-d8QuF3-bsgRuu-88WPgJ-5uEfbR-4Stdkn-h3TW95-c8b1qb-4StdSg-ryEQM7-bk6dR6-dbTEz3-5t6wEr

### Explore More

Create a table of values for each equation and then graph it on the coordinate plane.

1. \begin{align*}y = 2x + 1\end{align*}
2. \begin{align*}y = 3x + 2\end{align*}
3. \begin{align*}y = -4x\end{align*}
4. \begin{align*}y = -2x\end{align*}
5. \begin{align*}y =-3x + 3\end{align*}
6. \begin{align*}y = 2x + 3\end{align*}
7. \begin{align*}y = 3x- 2\end{align*}
8. \begin{align*}y =-8x\end{align*}
9. \begin{align*}y = 3x + 1\end{align*}
10. \begin{align*}y = 4x\end{align*}
11. \begin{align*}y = -2x + 2\end{align*}
12. \begin{align*}y = 2x- 2\end{align*}
13. \begin{align*}y = x- 1\end{align*}
14. \begin{align*}x = 4\end{align*}
15. \begin{align*}y = -2\end{align*}

### Vocabulary Language: English

Cartesian Plane

Cartesian Plane

The Cartesian plane is a grid formed by a horizontal number line and a vertical number line that cross at the (0, 0) point, called the origin.
Function

Function

A function is a relation where there is only one output for every input. In other words, for every value of $x$, there is only one value for $y$.
linear equation

linear equation

A linear equation is an equation between two variables that produces a straight line when graphed.
Slope

Slope

Slope is a measure of the steepness of a line. A line can have positive, negative, zero (horizontal), or undefined (vertical) slope. The slope of a line can be found by calculating “rise over run” or “the change in the $y$ over the change in the $x$.” The symbol for slope is $m$
Standard Form

Standard Form

The standard form of a line is $Ax + By = C$, where $A, B,$ and $C$ are real numbers.