Suppose that the cost of a wedding was a function of the number of guests attending. If you knew the slope of the function and you also knew how much the wedding would cost if 150 guests attended, could you write a linear equation representing this situation? If so, what form of the equation would be easiest to use? In this Concept, you'll learn about the pointslope form of a linear equation so that you can answer questions like these.
Guidance
Equations can be written in many forms. The previous Concepts taught you how to write equations of lines in slopeintercept form. This Concept will provide a second way to write an equation of a line: pointslope form.
The equation of the line between any two points
To write an equation in pointslope form, you need two things:
 The slope of the line
 A point on the line
Example A
Write an equation for a line containing (9, 3) and (4, 5).
Solution: Begin by finding the slope.
Instead of trying to find
It doesn't matter which point you use.
You could also use the other ordered pair to write the equation:
These equations may look completely different, but by solving each one for
This process is called rewriting in slopeintercept form.
Graphing Equations Using PointSlope Form
If you are given an equation in pointslope form, it is not necessary to rewrite it in slopeintercept form in order to graph it. The pointslope form of the equation gives you enough information so you can graph the line.
Example B
Make a graph of the line given by the equation
Solution: Begin by rewriting the equation to make it pointslope form:
A slope of
Now draw a line through the two points and extend the line in both directions.
Writing a Linear Function in PointSlope Form
Remember from the previous Concept that
Example C
Write the equation of the linear function in pointslope form.
Solution: This function has a slope of 9.8 and contains the ordered pair (5.5, 12.5). Substituting the appropriate values into pointslope form, we get the following:
Replacing
where the last equation is in slopeintercept form.
Guided Practice
Rewrite
Solution: Use the Distributive Property to simplify the right side of the equation:
Solve for
Practice
Sample explanations for some of the practice exercises below are available by viewing the following video. Note that there is not always a match between the number of the practice exercise in the video and the number of the practice exercise listed in the following exercise set. However, the practice exercise is the same in both. CK12 Basic Algebra: Linear Equations in PointSlope Form (9:38)
 What is the equation for a line containing the points
(x1,y1) and(x2,y2) in pointslope form?  In what ways is it easier to use pointslope form rather than slopeintercept form?
In 3  13, write the equation for the line in pointslope form.
 The slope is
13 ; they− intercept is –4.  The slope is
−110 and contains the point (10, 2).  The slope is –75 and contains the point (0, 125).
 The slope is 10 and contains the point (8, –2).
 The line contains the points (–2, 3) and (–1, –2).
 The line contains the points (0, 0) and (1, 2).
 The line contains the points (10, 12) and (5, 25).
 The line contains the points (2, 3) and (0, 3).
 The line has a slope of
35 and ay− intercept of –3.  The line has a slope of –6 and a
y− intercept of 0.5.  The line contains the points (–4, –2) and (8, 12).
In 14  17, write each equation in slopeintercept form.

y−2=3(x−1) 
y+4=−23(x+6) 
0=x+5 
y=14(x−24)
In 18 – 25, write the equation of the linear function in pointslope form.

m=−15 andf(0)=7 
m=−12 andf(−2)=5 
f(−7)=5 andf(3)=−4 
f(6)=0 andf(0)=6 
m=3 andf(2)=−9  \begin{align*}m=\frac{9}{5}\end{align*} and \begin{align*}f(0)=32\end{align*}
 \begin{align*}m=25\end{align*} and \begin{align*}f(0)=250\end{align*}
 \begin{align*}f(32)=0\end{align*} and \begin{align*}f(77)=25\end{align*}