<meta http-equiv="refresh" content="1; url=/nojavascript/">

# Mental Math for Multiplication/Division Equations

0%
Progress
Practice Mental Math for Multiplication/Division Equations
Progress
0%
Solve and Check Single-Variable Equations Using Mental Math and Substitution

Credit: Roberto Trombello
Source: https://www.flickr.com/photos/massimo_riserbo/5211779921/in/photolist-8WxJAv-cZ2x6j-j1ycGH-n3iEsa-oCPvfe-6AzSx7-9QzVg-oMGkCE-8U2kQz-bAZ4FV-mPWARP-d3Pdi1-4EGvtE-96dZJE-astWQE-gVVBPY-7LLavx-dg9kXj-48Dx36-5vKW5W-ax2qGK-4bCXw6-dameug-bBZq5i-4TR7AP-dfsVNr-ddjCzx-7Vr7wY-9CnAuB-bqjy4M-nMdp9X-ddWZPf-cuK2HC-aJUYA4-f6Fqxa-93udUe-73Aw5a-o8N7DY-8U2kSe-9uXAkt-9huEfs-9F1wkV-9cNYpx-9ohcKa-dCgqRX-88Gq97-8PbpjF-8idDi8-iH98pX-8PxqvA

Maria and her mother are shopping for a dress for Maria’s school dance. The dress Maria likes the most is 120. She asks her mom, “If I give you my cleaning money for the next six weeks, will you pay the other half?” Maria is paid the same amount of money each week to clean her neighbor’s house. How can you use the information given here to determine how much money Maria earns each week? In this concept, you will learn to solve and check single variable equations using mental math and substitution. ### Guidance An equation is a statement of equality of two mathematical expressions. The quantity on one side of the equals sign must have the same value as the quantity on the other side of the equals sign. For example, 116=5\begin{align*}11-6=5\end{align*}, x+4=12\begin{align*}x+4 =12\end{align*}, 3x6=9\begin{align*}3x-6=9\end{align*}, and x25=4\begin{align*}\frac{x}{2}-5=4\end{align*} are all equations with a single variable. Remember, a variable is a letter that represents a quantity. When working with an equation involving a single variable, you are looking for the number that gives a true statement when you replace the variable by the number. This process is referred to as solving the equation. The number that gives the true statement is said to “satisfy” the equation and is called the solution or root of the equation. Let’s look at an example of solving an equation with a single variable. Solve the equation x+4=12\begin{align*}x+4=12\end{align*}. You can solve this equation using mental math. Ask yourself, “What number added to 4 gives 12 or what is the result of subtracting 4 from 12?” Either way, the solution is 8 because 8+4=12\begin{align*}8+4=12\end{align*} and 124=8\begin{align*}12-4=8\end{align*}. You have solved the equation and can express your solution as x=8\begin{align*}x=8\end{align*}. To check your answer, return to the equation you were given to solve and substitute x=8\begin{align*}x=8\end{align*} into the equation. x+48+4==1212 Then, add the numbers on the left side of the equals sign. 8+412==1212 The solution of x=8\begin{align*}x=8\end{align*} gives a true statement. Let’s look at one more example. Solve the equation 3x=18\begin{align*}3x=18\end{align*}. You can figure out this solution by using mental math. Ask yourself, “What number times 3 gives 18 or how many times 3 divides into 18?” Either way, the solution is 6 because 3×6=18\begin{align*}3 \times 6 =18\end{align*} and 18÷3=6\begin{align*}18 \div 3 = 6\end{align*}. The solution is x=6\begin{align*}x=6\end{align*}. To check your answer, return to the equation you were given to solve and substitute x=6\begin{align*}x=6\end{align*} into the equation. 3x3(6)==1818 Now multiply the numbers on the left side of the equals sign. 18=18 The solution of x=6\begin{align*}x=6\end{align*} gives a true statement. ### Guided Practice Solve the equation 3x6=9\begin{align*}3x-6=9\end{align*}. The equation is asking you to find 3 times what number (x)\begin{align*}(x)\end{align*} take away 6 equals nine. You can use mental math to solve this equation. First, ask yourself, “What number subtract 6 equals 9?” The answer is 15. Next, ask yourself, “Three times what number (x)\begin{align*}(x)\end{align*} equals 15?” The answer is 5. x=5\begin{align*}x=5\end{align*} To check your answer, return to the equation you were given to solve and substitute x=5\begin{align*}x=5\end{align*} into the equation. 3x63(5)6==99 First, multiply 3(5)=15\begin{align*}3(5)=15\end{align*} on the left side of the equals sign. 156=9 Next, subtract the numbers 156=9\begin{align*}15-6=9\end{align*} on the left side of the equals sign. 9=9 The root is x=5\begin{align*}x=5\end{align*}. ### Examples #### Example 1 Solve and check the equation x2=12\begin{align*}\frac{x}{2}=12\end{align*} using mental math. First, determine what the equation is asking you to find. The equation is asking you to find what number (x)\begin{align*}(x)\end{align*} divided by two equals 12. The number is 24 because 24÷2=12\begin{align*}24 \div 2=12\end{align*}. The root is x=24\begin{align*}x=24\end{align*}. CHECK: First, substitute x=24\begin{align*}x=24\end{align*} into the equation. 242=12 Then, divide 24 by 2 on the left side of the equals sign. 2)24¯¯¯¯¯ 12 204 4 012=12 #### Example 2 Determine whether \begin{align*}x=6\end{align*} is the solution to the following equation: First, substitute \begin{align*}x=6\end{align*} into the given equation. Next, multiply \begin{align*}3(6)=18\end{align*} to clear the parenthesis. Then, subtract the numbers on the left side of the equals sign. \begin{align*}18-8=10\end{align*} This is not a true statement. The answer is NOT \begin{align*}x=6\end{align*}. ### Follow Up Credit: Jenelle Source: https://www.flickr.com/photos/thrivingink/3972595937/in/photolist-743Anp-qhu4Ro-5jQpqg-qwJvmA-qhrXCd-5JB1Jk-6kRm6s-5HCMbV-dRdSsx-747xwE-5JF62A-a6aBAX-743AWH-dQAtGw-ftchtW-b6h3dR-9x81qJ-7oTtoi-dL6R87-buhotj-dRH2Ve-9x51AM-5JBoiB-5JFhTw-9jxc1M-5JF8kA-5JB1x4-9x51jX-pJWaDS-5JBdYc-5JARX6-5JAZXn-5JB19x-5JF9K7-5JAVEn-5JAPk8-5JASD8-5JASvK-5JFip7-5JFtro-5JFiKy-5JFhHC-5JB2QV-as6GdZ-5JFkEh-5JFie1-5JAZKX-5JB2j4-5JF7Ao-5JB4gp License: CC BY-NC 3.0 Remember Maria and her new dress? You want to know how much money Maria earns each week, if six weeks worth of pay is equal to half the cost of the120 dress.

First, divide \begin{align*}\120.00 \div 2\end{align*} to figure out how much Maria and her mom are each paying for the gown.

Next, write an equation to show that Maria is paying 6 times some amount of money \begin{align*}(x)\end{align*} equal to \$60.

Then, ask yourself, “Six times what number equals 60?”

The solution is \begin{align*}x=10\end{align*} dollars.

### Explore More

Solve each equation using mental math. Be sure to check each answer by substituting your solution back into the original problem. Then simplify to see if the equation expresses a true statement.

1. \begin{align*}x+4=22\end{align*}
2. \begin{align*}y+8=30\end{align*}
3. \begin{align*}x-19=40\end{align*}
4. \begin{align*}12-x=9\end{align*}
5. \begin{align*}4x=24\end{align*}
6. \begin{align*}6x=36\end{align*}
7. \begin{align*}9x=81\end{align*}
8. \begin{align*}\frac{y}{5}=2\end{align*}
9. \begin{align*}\frac{a}{8}=5\end{align*}
10. \begin{align*}\frac{12}{b}=6\end{align*}
11. \begin{align*}6x+3=27\end{align*}
12. \begin{align*}8y-2=54\end{align*}
13. \begin{align*}3b+12=30\end{align*}
14. \begin{align*}9y-7=65\end{align*}
15. \begin{align*}12a-5=31\end{align*}
16. \begin{align*}\frac{x}{2} + 4=8\end{align*}
17. \begin{align*}\frac{x}{4}+3=7\end{align*}
18. \begin{align*}\frac{10}{x} +9 =14\end{align*}
19. \begin{align*}5a-12=33\end{align*}
20. \begin{align*}7b-9=33\end{align*}

### Vocabulary Language: English

Algebraic Expression

Algebraic Expression

An expression that has numbers, operations and variables, but no equals sign.
Equation

Equation

An equation is a mathematical sentence that describes two equal quantities. Equations contain equals signs.
Inverse Operation

Inverse Operation

Inverse operations are operations that "undo" each other. Multiplication is the inverse operation of division. Addition is the inverse operation of subtraction.
Variable

Variable

A variable is a symbol used to represent an unknown or changing quantity. The most common variables are a, b, x, y, m, and n.