<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Skip Navigation

Multi-Step Equations

Maintain balance of an equation throughout all steps needed to solve.

Atoms Practice
Estimated26 minsto complete
Practice Multi-Step Equations
This indicates how strong in your memory this concept is
Estimated26 minsto complete
Practice Now
Turn In
Solving Multi-Step Equations

Cell-U-Lar cell phone company includes 500 texts in their $79/month fee and then charges $0.10 for each additional text. We-B-Mobile cell phone company also includes 500 texts in their $59/month fee and then charges $0.25 for each additional text. At how many texts, over 500, will the two bills be the same?

Multi-Step Equations

The types of equations in this concept involve at least three steps. Keep in mind that the last two steps when solving a linear equation will always be the same: add or subtract the number that is on the same side of the equals sign as the variable, then multiply or divide by the number with the variable.

Let's solve the following equations.

  1. Solve \begin{align*}3(x-5)+4=10\end{align*}3(x5)+4=10.

When solving more complicated equations, start with one side and simplify as much as you can. The left side of this equation looks more complicated, so let’s simplify it by using the Distributive Property and combining like terms.

\begin{align*}3(x-5)+4 &= 10\\ 3x-15+4 &= 10\\ 3x-11 &= 10\end{align*}3(x5)+43x15+43x11=10=10=10

Now, this equation should look familiar. Continue to solve.

\begin{align*}& \ 3x-\bcancel{11}=10\\ & \underline{\quad \ \ + \bcancel{11} \ + 11 \; \;}\\ & \qquad \frac{\bcancel{3}x}{\bcancel{3}}=\frac{21}{3}\\ & \qquad \ \ x=7\end{align*} 3x11=10  +11 +113x3=213  x=7

Check your answer: \begin{align*}3(7-5)+4=3 \cdot 2+4=6+4=10 \end{align*}3(75)+4=32+4=6+4=10

  1. Solve \begin{align*}8x-17=4x+23\end{align*}8x17=4x+23.

This equation has \begin{align*}x\end{align*} on both sides of the equals sign. Therefore, we need to move one of the \begin{align*}x\end{align*} terms to the other side of the equation. It does not matter which \begin{align*}x\end{align*} term you move. We will move the \begin{align*}4x\end{align*} to the other side so that, when combined, the \begin{align*}x\end{align*} term is positive.

\begin{align*}& 8x-17=\bcancel{4x}+23\\ & \underline{-4x \quad \ \ -\bcancel{4x} \; \; \; \; \; \; \; \;}\\ & 4x-\bcancel{17}=23\\ & \underline{\quad + \bcancel{17} \ +17 \; \; \; \; \; \; \; \; \;}\\ & \qquad \frac{\bcancel{4}x}{\bcancel{4}}=\frac{40}{4}\\ & \qquad \ \ x=10\end{align*}

Check your answer:

\begin{align*}8(10)-17 &= 4(10)+23\\ 80-17 &= 40+23 \\ 63 &= 63\end{align*}

  1. Solve \begin{align*}2(3x-1)+2x=5-(2x-3)\end{align*}.

This equation combines what was present in the previous two problems. First, use the Distributive Property.

\begin{align*}2(3x-1)+2x &= 5-(2x-3)\\ 6x-2+2x &= 5-2x+3\end{align*}

Don’t forget to distribute the negative sign in front of the second set of parenthesis. Treat it like distributing a –1. Now, combine like terms and solve the equation.

\begin{align*}& \ \ \ 8x-\bcancel{2}=8-\bcancel{2x}\\ & \underline{+2x+\bcancel{2} +2+\bcancel{2x}}\\ & \quad \ \frac{\bcancel{10}x}{\bcancel{10}}=\frac{10}{10}\\ & \qquad \ x=1\end{align*}

Check your answer:

\begin{align*}2(3(1)-1)+2(1) &= 5-(2(1)-3)\\ 2 \cdot 2+2 &= 5-(-1) \\ 4+2 &= 6\end{align*}


Example 1

Earlier, you were asked to find when the two bills will be the same for texts over 500.

Let's write an expression for the total cost associated with each cell phone company.

Cell-U-Lar: \begin{align*}79+0.1t\end{align*}

We-B-Mobile: \begin{align*}59+0.25t\end{align*}

Where t is the number of texts over 500. Set the two expressions equal to each other to see when the plans are equal.

\begin{align*}79+0.1t&=59+0.25t\\ 20&=0.15t\\ 133. \bar 3 &=t\end{align*}

At 133 additional texts, the bills would be just about the same, but don't forget that each company includes 500 texts at no additional cost. So, you would have to go just over 633 texts to make the two plans equal. If you text less than that, the plan from We-B-Mobile is a better deal. More than 633, then Cell-U-Lar makes more sense.

Example 2

Solve the following equation: \begin{align*}\frac{3}{4}+\frac{2}{3}x=2x+\frac{5}{6}\end{align*}. Check your answer.

Use the LCD method: multiply every term by the LCD of 4, 3, and 6.

\begin{align*}& 12 \left(\frac{3}{4}+\frac{2}{3}x = 2x+\frac{5}{6}\right)\\ & \qquad 9+8x = 24x+10\end{align*}

Now, combine like terms. Follow the steps as in problems #2 and #3 above.

\begin{align*}& \quad 9+\bcancel{8x}=24x+\bcancel{10}\\ & \underline{-10-\bcancel{8x} \ \ -8x-\bcancel{10} \; \;}\\ & \qquad \frac{-1}{16}=\frac{\bcancel{16}x}{\bcancel{16}}\\ & \quad -\frac{1}{16}=x\end{align*}

Check your answer:

\begin{align*}\frac{3}{4}+\frac{2}{3} \left(-\frac{1}{16}\right) &= 2\left(-\frac{1}{16}\right)+\frac{5}{6}\\ \frac{3}{4}-\frac{1}{24} &= -\frac{1}{8}+\frac{5}{6}\\ \frac{18}{24}-\frac{1}{24} &= -\frac{3}{24}+\frac{20}{24} \\ \frac{17}{24}&=\frac{17}{24}\end{align*}

Example 3

Solve the following equation: \begin{align*}0.6(2x-7)=5x-5.1\end{align*}. Check your answer.

Even though there are decimals in this problem, we can approach it like any other problem. Use the Distributive Property and combine like terms.

\begin{align*}& \ 0.6(2x+7)=4.3x-5.1\\ & \ \ 1.2x+\cancel{4.2}=\cancel{4.3x}-5.1\\ & \underline{-4.3x-\cancel{4.2} \ -\cancel{4.3x}-4.2 \; \;}\\ & \quad \quad \ \frac{-\cancel{3.1}x}{-\cancel{3.1}}=\frac{-9.3}{-3.1}\\ & \qquad \qquad \ \ x=3\end{align*}

Check your answer:

\begin{align*}0.6(2(3)+7) &= 4.3(3)-5.1\\ 0.6 \cdot 13 &= 12.9-5.1 \\ 7.8 &= 7.8\end{align*}


Solve each equation and check your solution.

  1. \begin{align*}-6(2x-5)=18\end{align*}
  2. \begin{align*}2-(3x+7)=-x+19\end{align*}
  3. \begin{align*}3(x-4)=5(x+6)\end{align*}
  4. \begin{align*}x-\frac{4}{5}=\frac{2}{3}x+\frac{8}{15}\end{align*}
  5. \begin{align*}8-9x-5=x+23\end{align*}
  6. \begin{align*}x-12+3x=-2(x+18)\end{align*}
  7. \begin{align*}\frac{5}{2}x+\frac{1}{4}=\frac{3}{4}x+2\end{align*}
  8. \begin{align*}5 \left(\frac{x}{3}+2\right)=\frac{32}{3}\end{align*}
  9. \begin{align*}7(x-20)=x+4\end{align*}
  10. \begin{align*}\frac{2}{7}\left(x+\frac{2}{3}\right)=\frac{1}{5}\left(2x-\frac{2}{3}\right)\end{align*}
  11. \begin{align*}\frac{1}{6}(x+2)=2\left(\frac{3x}{2}-\frac{5}{4}\right)\end{align*}
  12. \begin{align*}-3(-2x+7)-5x=8(x-3)+17\end{align*}

Challenge Solve the equations below. Check your solution.

  1. \begin{align*}\frac{3x}{16}+\frac{x}{8}=\frac{3x+1}{4}+\frac{3}{2}\end{align*}
  2. \begin{align*}\frac{x-1}{11}=\frac{2}{5} \cdot \frac{x+1}{3}\end{align*}
  3. \begin{align*}\frac{3}{x}=\frac{2}{x+1}\end{align*}

Answers for Review Problems

To see the Review answers, open this PDF file and look for section 1.9. 

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / Notes
Show More

Image Attributions

Explore More

Sign in to explore more, including practice questions and solutions for Multi-Step Equations.
Please wait...
Please wait...