<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />

# Multiplication and Division of Radicals

## Rationalize the denominator

0%
Progress
Practice Multiplication and Division of Radicals
Progress
0%
Dividing Square Roots

The area of a rectangle is 30\begin{align*}\sqrt{30}\end{align*}. The length of the rectangle is 20\begin{align*}\sqrt{20}\end{align*}. What is the width of the rectangle?

### Watch This

Watch the first part of this video, until about 3:15.

### Guidance

Dividing radicals can be a bit more difficult that the other operations. The main complication is that you cannot leave any radicals in the denominator of a fraction. For this reason we have to do something called rationalizing the denominator, where you multiply the top and bottom of a fraction by the same radical that is in the denominator. This will cancel out the radicals and leave a whole number.

4. ab=ab\begin{align*}\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}\end{align*}

5. abbb=abb\begin{align*}\frac{\sqrt{a}}{\sqrt{b}} \cdot \frac{\sqrt{b}}{\sqrt{b}} = \frac{\sqrt{ab}}{b}\end{align*}

#### Example A

Simplify 14\begin{align*}\sqrt{\frac{1}{4}}\end{align*}.

Solution: Break apart the radical by using Rule #4.

14=14=12

#### Example B

Simplify 23\begin{align*}\frac{2}{\sqrt{3}}\end{align*}.

Solution: This might look simplified, but radicals cannot be in the denominator of a fraction. This means we need to apply Rule #5 to get rid of the radical in the denominator, or rationalize the denominator. Multiply the top and bottom of the fraction by 3\begin{align*}\sqrt{3}\end{align*}.

2333=233

#### Example C

Simplify 3240\begin{align*}\sqrt{\frac{32}{40}}\end{align*}.

Solution: Reduce the fraction, and then apply the rules above.

3240=45=45=2555=255

Intro Problem Revisit Recall that the area of a rectangle equals the length times the width, so to find the width, we must divide the area by the length.

3020\begin{align*}\sqrt{\frac{30}{20}}\end{align*} = 32\begin{align*}\sqrt{\frac{3}{2}}\end{align*}.

Now we need to rationalize the denominator. Multiply the top and bottom of the fraction by 2\begin{align*}\sqrt{2}\end{align*}.

3222=62

Therefore, the width of the rectangle is 62\begin{align*}\frac{\sqrt{6}}{2}\end{align*}.

### Guided Practice

Simplify the following expressions using the Radical Rules learned in this concept and the previous concept.

1. 12\begin{align*}\sqrt{\frac{1}{2}}\end{align*}

2. 6450\begin{align*}\sqrt{\frac{64}{50}}\end{align*}

3. 436\begin{align*}\frac{4\sqrt{3}}{\sqrt{6}}\end{align*}

1. 12=12=1222=22\begin{align*}\sqrt{\frac{1}{2}}=\frac{\sqrt{1}}{\sqrt{2}}=\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}= \frac{\sqrt{2}}{2}\end{align*}

2. 6450=3225=1625=425\begin{align*}\sqrt{\frac{64}{50}}=\sqrt{\frac{32}{25}}=\frac{\sqrt{16 \cdot 2}}{5}= \frac{4\sqrt{2}}{5}\end{align*}

3. The only thing we can do is rationalize the denominator by multiplying the numerator and denominator by 6\begin{align*}\sqrt{6}\end{align*} and then simplify the fraction.

43666=4186=4926=1226=22

### Explore More

Simplify the following fractions.

1. 425\begin{align*}\sqrt{\frac{4}{25}}\end{align*}
2. 1649\begin{align*}-\sqrt{\frac{16}{49}}\end{align*}
3. 96121\begin{align*}\sqrt{\frac{96}{121}}\end{align*}
4. 5210\begin{align*}\frac{5\sqrt{2}}{\sqrt{10}}\end{align*}
5. 615\begin{align*}\frac{6}{\sqrt{15}}\end{align*}
6. 6035\begin{align*}\sqrt{\frac{60}{35}}\end{align*}
7. 81830\begin{align*}8\frac{\sqrt{18}}{\sqrt{30}}\end{align*}
8. 126\begin{align*}\frac{12}{\sqrt{6}}\end{align*}
9. 208143\begin{align*}\sqrt{\frac{208}{143}}\end{align*}
10. 213214\begin{align*}\frac{21\sqrt{3}}{2\sqrt{14}}\end{align*}

Challenge Use all the Radical Rules you have learned in the last two concepts to simplify the expressions.

1. 81215\begin{align*}\sqrt{\frac{8}{12}} \cdot \sqrt{15}\end{align*}
2. 32456205\begin{align*}\sqrt{\frac{32}{45}} \cdot \frac{6\sqrt{20}}{\sqrt{5}}\end{align*}
3. 242+8268\begin{align*}\frac{\sqrt{24}}{\sqrt{2}}+\frac{8\sqrt{26}}{\sqrt{8}}\end{align*}
4. 23+463\begin{align*}\frac{\sqrt{2}}{\sqrt{3}}+\frac{4\sqrt{6}}{\sqrt{3}}\end{align*}
5. 551221510\begin{align*}\frac{5\sqrt{5}}{\sqrt{12}}-\frac{2\sqrt{15}}{\sqrt{10}}\end{align*}

### Vocabulary Language: English

Rationalize the denominator

Rationalize the denominator

To rationalize the denominator means to rewrite the fraction so that the denominator no longer contains a radical.