<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Skip Navigation
Our Terms of Use (click here to view) and Privacy Policy (click here to view) have changed. By continuing to use this site, you are agreeing to our new Terms of Use and Privacy Policy.

Properties of Rational Numbers versus Irrational Numbers

Differentiate between numbers that can be written as a fraction and numbers that can't be

Atoms Practice
Estimated5 minsto complete
Practice Properties of Rational Numbers versus Irrational Numbers
Estimated5 minsto complete
Practice Now
Properties of Rational Numbers versus Irrational Numbers

What if you wanted to identify a number like \begin{align*}\sqrt{2}\end{align*}? Would you classify it as rational or irrational? After completing this Concept, you'll be able to decide which category numbers like this one fall into.

Watch This

CK-12 Foundation: 0210S Irrational Numbers (H264)


Not all square roots are irrational, but any square root that can’t be reduced to a form with no radical signs in it is irrational. For example, \begin{align*}\sqrt{49}\end{align*} is rational because it equals 7, but \begin{align*}\sqrt{50}\end{align*} can’t be reduced farther than \begin{align*}5 \sqrt{2}\end{align*}. That factor of \begin{align*}\sqrt{2}\end{align*} is irrational, making the whole expression irrational.

Example A

Identify which of the following are rational numbers and which are irrational numbers.

a) 23.7

b) 2.8956

c) \begin{align*}\pi\end{align*}

d) \begin{align*}\sqrt{6}\end{align*}


a) 23.7 can be written as \begin{align*}23 \frac{7}{10}\end{align*}, so it is rational.

b) 2.8956 can be written as \begin{align*}2 \frac{8956}{10000}\end{align*}, so it is rational.

c) \begin{align*}\pi = 3.141592654 \ldots\end{align*} We know from the definition of \begin{align*}\pi\end{align*} that the decimals do not terminate or repeat, so \begin{align*}\pi\end{align*} is irrational.

d) \begin{align*}\sqrt{6} = \sqrt{2} \ \times \sqrt{3}\end{align*}. We can’t reduce it to a form without radicals in it, so it is irrational.

Repeating Decimals

Any number whose decimal representation has a finite number of digits is rational, since each decimal place can be expressed as a fraction. For example, \begin{align*}3. \overline{27} = 3.272727272727 \ldots\end{align*} This decimal goes on forever, but it’s not random; it repeats in a predictable pattern. Repeating decimals are always rational; this one can actually be expressed as \begin{align*}\frac{36}{11}\end{align*}.

Example B

Express the following decimals as fractions.

a.) 0.439

b.) \begin{align*}0.25 \overline{38}\end{align*}


a.) 0.439 can be expressed as \begin{align*}\frac{4}{10} + \frac{3}{100} + \frac{9}{1000}\end{align*}, or just \begin{align*}\frac{439}{1000}\end{align*}. Also, any decimal that repeats is rational, and can be expressed as a fraction.

b.) \begin{align*}0.25 \overline{38}\end{align*} can be expressed as \begin{align*}\frac{25}{100} + \frac{38}{9900}\end{align*}, which is equivalent to \begin{align*}\frac{2513}{9900}\end{align*}.

Classify Real Numbers

We can now see how real numbers fall into one of several categories.

License: CC BY-NC 3.0

If a real number can be expressed as a rational number, it falls into one of two categories. If the denominator of its simplest form is one, then it is an integer. If not, it is a fraction (this term also includes decimals, since they can be written as fractions.)

If the number cannot be expressed as the ratio of two integers (i.e. as a fraction), it is irrational.

Example C

Classify the following real numbers.

a) 0

b) -1

c) \begin{align*}\frac{\pi}{3}\end{align*}

d) \begin{align*}\frac{\sqrt{2}}{3}\end{align*}

e) \begin{align*}\frac{\sqrt{36}}{9}\end{align*}


a) Integer

b) Integer

c) Irrational (Although it’s written as a fraction, \begin{align*}\pi\end{align*} is irrational, so any fraction with \begin{align*}\pi\end{align*} in it is also irrational.)

d) Irrational

e) Rational (It simplifies to \begin{align*}\frac{6}{9}\end{align*}, or \begin{align*}\frac{2}{3}\end{align*}.)

Watch this video for help with the Examples above.

CK-12 Foundation: Irrational Numbers

Guided Practice

Place the following numbers in numerical order, from lowest to highest.

\begin{align*} \frac{100}{99} \qquad \frac{\sqrt{3}}{3} \qquad -\sqrt{.075} \qquad \frac{2\pi}{3}\end{align*}


Since \begin{align*}-\sqrt{.075}\end{align*} is the only negative number, it is the smallest.

Since \begin{align*}100>99\end{align*}, \begin{align*}\frac{100}{99}>1\end{align*}.

Since the \begin{align*}\sqrt{3}<s\end{align*}, then \begin{align*}\frac{\sqrt{3}}{3}<1\end{align*}.

Since \begin{align*} \pi>3\end{align*}, then \begin{align*}\frac{\pi}{3}>1 \Rightarrow \frac{2\pi}{3}>2\end{align*}

This means that the ordering is:

\begin{align*}-\sqrt{.075}, \frac{\sqrt{3}}{3}, \frac{100}{99}, \frac{2\pi}{3}\end{align*}

Explore More

For questions 1-7, classify the following numbers as an integer, a rational number or an irrational number.

  1. \begin{align*}\sqrt{0.25}\end{align*}
  2. \begin{align*}\sqrt{1.35}\end{align*}
  3. \begin{align*}\sqrt{20}\end{align*}
  4. \begin{align*}\sqrt{25}\end{align*}
  5. \begin{align*}\sqrt{100}\end{align*}
  6. \begin{align*}\sqrt{\pi^2}\end{align*}
  7. \begin{align*}\sqrt{2\cdot 18}\end{align*}
  8. Write 0.6278 as a fraction.
  9. Place the following numbers in numerical order, from lowest to highest. \begin{align*}\frac{\sqrt{6}}{2} \qquad \frac{61}{50} \qquad \sqrt{1.5} \qquad \frac{16}{13}\end{align*}
  10. Use the marked points on the number line and identify each proper fraction.
    License: CC BY-NC 3.0

Answers for Explore More Problems

To view the Explore More answers, open this PDF file and look for section 2.10. 

My Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / notes
Show More


approximate solution

An approximate solution to a problem is a solution that has been rounded to a limited number of digits.

Irrational Number

An irrational number is a number that can not be expressed exactly as the quotient of two integers.

Perfect Square

A perfect square is a number whose square root is an integer.

principal square root

The principal square root is the positive square root of a number, to distinguish it from the negative value. 3 is the principal square root of 9; -3 is also a square root of 9, but it is not principal square root.

Image Attributions

  1. [1]^ License: CC BY-NC 3.0
  2. [2]^ License: CC BY-NC 3.0

Explore More

Sign in to explore more, including practice questions and solutions for Properties of Rational Numbers versus Irrational Numbers.
Please wait...
Please wait...