<meta http-equiv="refresh" content="1; url=/nojavascript/"> Raising a Product or Quotient to a Power ( Study Aids ) | Algebra | CK-12 Foundation
Dismiss
Skip Navigation

Raising a Product or Quotient to a Power

%
Best Score
Practice Raising a Product or Quotient to a Power
Practice
Best Score
%
Practice Now

Raising a Product or Quotient to a Power

Raising a Product or Quotient to a Power

It is important to know some general rules about exponents:

\text{Raising a product to a power:} && (x \cdot y)^n & = x^n \cdot y^n\\\text{Raising a quotient to a power:} && \left(\frac{x}{y} \right)^n & = \frac{x^n}{y^n}

In radical notation, these properties are written as

\text{Raising a product to a power:} && \sqrt[m]{x \cdot y} & = \sqrt[m]{x} \ \cdot \sqrt[m]{y}\\\text{Raising a quotient to a power:} && \sqrt[m]{\frac{x}{y}} & = \frac{\sqrt[m]{x}}{\sqrt[m]{y}}

Exponent Rule #1

Whenever you multiply terms of the same base, you can add the exponents.

( x m ) ( x n ) = x( m + n )

Note: You cannot  add the exponents in this case: (x4)(y3) because x and y are different base terms.

Practice:

  1. Simplify(x^3)(x^4)
  2. Simplify (q^6)(q^-2)

Exponent Rule #2

Whenever you have an exponent expression that is raised to a power, you can multiply the exponent and power:

( xm ) n = x m n

Practice:

  1. Simplify (x^5)^6
  2. Simplify (x^7)^3
  3. Simplify (xy^2)^3 (Note the "squared" applies to both x and y).

Exponent Rule #3

Anything to the power of zero is one.

x^0=1

Exponent Rule #4

If you are dividing quantities with the same base term, you can subtract the exponents.

License: CC BY-NC 3.0

Practice:

  1. Simplify: \frac{x^4}{x^3}
  2. Simplify: \frac{x^-6}{x^4}

Exponent Rule #5

License: CC BY-NC 3.0

Practice:

  1. Simplify: (\frac{x}{y})^3

These are the basic rules, although there are many more laws of exponents that stem from these.

Image Attributions

  1. [1]^ License: CC BY-NC 3.0
  2. [2]^ License: CC BY-NC 3.0

Reviews

Email Verified
Well done! You've successfully verified the email address .
OK
Please wait...
Please wait...

Original text