<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation
You are viewing an older version of this Concept. Go to the latest version.

Scientific Notation

Writing and reading scientific notation

Atoms Practice
Estimated14 minsto complete
%
Progress
Practice Scientific Notation
Practice
Progress
Estimated14 minsto complete
%
Practice Now
Scientific Notation

Very large and very small quantities and measures are often used to provide information in magazines, textbooks, television, newspapers and on the Internet. Some examples are:

  • The distance between the sun and Neptune is 4,500,000,000 km.
  • The diameter of an electron is approximately 0.00000000000022 inches.

Scientific notation is a convenient way to represent such numbers. How could you write the numbers above using scientific notation?

Watch This

Khan Academy Scientific Notation

Khan Academy Scientific Notation Examples

Guidance

To represent a number in scientific notation means to express the number as a product of two factors: a number between 1 and 10 (including 1) and a power of 10. A positive real number ‘’ is said to be written in scientific notation if it is expressed as where In other words, a number in scientific notation is a single nonzero digit followed by a decimal point and other digits, all multiplied by a power of 10.

When working with numbers written in scientific notation, you can use the following rules. These rules are proved by example in Example B and Example C.

Example A

Write the following numbers using scientific notation:

i) 2,679,000

ii) 0.00005728

Solutions:

i)

The exponent, , represents the decimal point that is 6 places to the right of the standard position of the decimal point.

ii)

The exponent, , represents the decimal point that is 5 places to the left of the standard position of the decimal point.

One advantage of scientific notation is that calculations with large or small numbers can be done by applying the laws of exponents.

Example B

Complete the following table.

Expression in Scientific Notation Expression in Standard Form Result in Standard Form Result in Scientific Notation

Solution:

Expression in Scientific Notation Expression in Standard Form Result in Standard Form Result in Scientific Notation
380,000
0.088
24,000
0.025

Note that the numbers in the last column have the same power of 10 as those in the first column.

Example C

Complete the following table.

Expression in Scientific Notation Expression in Standard Form Result in Standard Form Result in Scientific Notation

Solution:

Expression in Scientific Notation Expression in Standard Form Result in Standard Form Result in Scientific Notation
504,000
0.00275
200
0.02125

Note that for multiplication, the power of 10 is the result of adding the exponents of the powers in the first column. For division, the power of 10 is the result of subtracting the exponents of the powers in the first column.

Example D

Calculate each of the following:

i)

ii)

iii)

iv)

Solution:

i) Before the rule can be used, one of the numbers must be rewritten so that the powers of 10 are the same.

Rewrite

The power indicates the number of places to the right that the decimal point must be moved to return 0.46 to the original number of 4.6.

Add the exponents of the power.

Rewrite the question and substitute with .

Apply the rule .

ii) Before the rule can be used, one of the numbers must be rewritten so that the powers of 10 are the same.

Rewrite

The power indicates the number of places to the left that the decimal point must be moved to return 47 to the original number of 4.7.

Add the exponents of the power.

Rewrite the question and substitute with .

Apply the rule .

The answer must be written in scientific notation.

iii)

iv)

Concept Problem Revisited

The distance between the sun and Neptune would be written as and the diameter of an electron would be written as .

Vocabulary

Scientific Notation
Scientific notation is a way of writing numbers in the form of a number between 1 and 10 multiplied by a power of 10. The number 196.5 written in scientific notation is and the number 0.0760 written in scientific notation is .

Guided Practice

1. Express the following product in scientific notation:

2. Express the following quotient in scientific notation:

3. If and , find an approximate value for . Express the answer in scientific notation.

Answers:

1. Apply the rule

Express the answer in scientific notation.

2. Begin by expressing the numerator and the denominator in scientific notation.

Apply the rule .

3. Express all values in scientific notation.

Use the values in scientific notation to determine an approximate value for .

In the numerator, apply the rule

Practice

Express each of the following in scientific notation:

  1. 42,000
  2. 0.00087
  3. 150.64
  4. 56,789
  5. 0.00947

Express each of the following in standard form:

Perform the indicated operations and express the answer in scientific notation

For the given values, perform the indicated operations for and express the answer in scientific notation and standard form.

  1. .

  1. .

Vocabulary

order of magnitude

order of magnitude

Formally, the order of magnitude is the exponent in scientific notation. Informally it refers to size. Two objects or numbers are of the same order of magnitude are relatively similar sizes.
Scientific Notation

Scientific Notation

Scientific notation is a means of representing a number as a product of a number that is at least 1 but less than 10 and a power of 10.
Standard Form

Standard Form

As opposed to scientific notation, standard form means writing numbers in the usual way with all of the zeros accounted for in the value.

Image Attributions

Explore More

Sign in to explore more, including practice questions and solutions for Scientific Notation.

Reviews

Please wait...
Please wait...

Original text