<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Skip Navigation
Our Terms of Use (click here to view) and Privacy Policy (click here to view) have changed. By continuing to use this site, you are agreeing to our new Terms of Use and Privacy Policy.

Simplification of Radical Expressions

Evaluate and estimate numerical square and cube roots

Atoms Practice
Estimated13 minsto complete
Practice Simplification of Radical Expressions
Estimated13 minsto complete
Practice Now
Simplification of Radical Expressions
License: CC BY-NC 3.0

Marco bought a square picture frame that measured 144 square inches. The wooden trim was \begin{align*}1.5^{{\prime}{\prime}}\end{align*} wide all the way around. How can Marco determine what size picture will fit the frame?

In this concept, you will learn how to simplify expressions that contain radicals.

Simplifying Radical Expressions

The square root symbol, \begin{align*}\sqrt{x}\end{align*}, is also called a radical.

You may already know that an expression is a mathematical sentence that contains numbers and operations. Sometimes radicals are included in a sentence.

Let’s look at an example.

\begin{align*}2 \times \sqrt{4} + 7\end{align*}

This sentence says “two times the square root of four plus seven.”

First, remember the Order of Operations.


Exponents (including square roots)

Multiplication and Division in order from left to right

Addition and Subtraction in order from left to right

Next, according to those rules, evaluate the square root of 4.

\begin{align*}\sqrt{4} =2\end{align*}

Next, substitute that value into the expression.

\begin{align*}2 \times 2 + 7\end{align*}

Then, complete the multiplication.

\begin{align*}2 \times 2 = 4\end{align*}

And substitute that given value.


The answer is 11.

Let’s look at another example.

\begin{align*}\sqrt{4} \times \sqrt{16} - 3\end{align*}

First, evaluate the radicals.

\begin{align*}\begin{array}{rcl} \sqrt{4} &=& 2 \\ \sqrt{16} &=& 4 \end{array}\end{align*}

Next, substitute these values into the expression.

\begin{align*}2 \times4-3\end{align*}

Next, complete the multiplication.

\begin{align*}2 \times 4=8\end{align*}

Then, complete the subtraction.


The answer is 5.


Example 1

Earlier, you were given a problem about Marco and his 144-square-inch picture frame with the wooden trim.

He needs to figure out what size picture he can put in.

First, you know that the length of each side can be determined by taking a square root.


Next, you know how much space the frame uses on each side.

\begin{align*}1.5 + 1.5 =\end{align*}

Then, subtract the value of the wooden frame from the length of the side to get the side dimension for a photo.

\begin{align*}\sqrt{144} - 3 =\end{align*}

Solve the radical and substitute.


The answer is 9. Marco can use a 9 inch by 9 inch photo in his new frame.

Example 2

Evaluate the expression.

\begin{align*}6 + \sqrt{9} - \sqrt{49} + 5\end{align*}

First, solve the radicals for the square roots.

\begin{align*}\begin{array}{rcl} \sqrt{9} &=& 3 \\ \sqrt{49} &=& 7 \end{array}\end{align*}

Next, substitute these values in the expression.


Then, add and subtract.

The answer is 7.

Example 3

\begin{align*}6 + \sqrt{81} -10\end{align*}

First, evaluate the radical.

\begin{align*}\sqrt{81} = 9\end{align*}

Next, substitute that value in the expression.

\begin{align*}6 + 9 - 10\end{align*}

Then add and subtract.

The answer is 5.

Example 4

\begin{align*}\sqrt{64} \div \sqrt{4} + 13\end{align*}

First, determine the square roots.

\begin{align*}\begin{array}{rcl} \sqrt{64} &=& 8 \\ \sqrt{4} &=& 2 \end{array}\end{align*}

Next, substitute those values in the expression.

\begin{align*}8 \div 2+13 \end{align*}

Then divide and substitute.

\begin{align*}4 + 13 \end{align*}

The answer is 17.

Example 5

Tiffany needs to trim a square piece of wood for her shop class. The board is 25 square inches. If Tiffany cuts off 1 inch all the way around, write the mathematical expression for the side dimensions of the new piece of wood. Then solve for the dimension.

First, draw a picture.

License: CC BY-NC 3.0

Next, you know that the original board is square and covers 25 square inches, so each side of the original board is 

\begin{align*}\text{old } s = \sqrt{25}\end{align*}

Then, you know that Tiffany will cut off one inch all the way around for a total of two inches subtracted from each side. The mathematical expression for the new side is:

\begin{align*}\text{new side} = \sqrt{25} - 2\end{align*}

Take the square root, then subtract.

\begin{align*}\begin{array}{rcl} \text{new side} &=& 5-2 \\ \text{new side} &=& 3 \ in. \end{array}\end{align*}

The answer is 3 inches. The new side is 3 inches.


Evaluate each radical expression.

  1. \begin{align*}2 + \sqrt{9} + 15 -2\end{align*}
  2. \begin{align*}3 \cdot 4 + \sqrt{169}\end{align*}
  3. \begin{align*}\sqrt{16} \cdot \sqrt{25} + \sqrt{36}\end{align*}
  4. \begin{align*}\sqrt{81} \cdot 12 + 12\end{align*}
  5. \begin{align*}\sqrt{36} + \sqrt{49} - \sqrt{16}\end{align*}
  6. \begin{align*}6 + \sqrt{36} + 25 -2\end{align*}
  7. \begin{align*}4 (5) + \sqrt{9} -2\end{align*}
  8. \begin{align*}15 + \sqrt{16} + 5\end{align*}
  9. \begin{align*}3 (2) + \sqrt{25} + 10\end{align*}
  10. \begin{align*}4(7) + \sqrt{49} - 12\end{align*}
  11. \begin{align*}2(4)+\sqrt{9}-8\end{align*}
  12. \begin{align*}3 (7) + \sqrt{25} + 21\end{align*}
  13. \begin{align*}8 (3) - \sqrt{36} + 15 -2\end{align*}
  14. \begin{align*}19 + \sqrt{144} - 22\end{align*}
  15. \begin{align*}3(4) + \sqrt{64} + \sqrt{25}\end{align*}

Review (Answers)

To see the Review answers, open this PDF file and look for section 9.3.


Perfect Square

A perfect square is a number whose square root is an integer.


The \sqrt{}, or square root, sign.

Radical Expression

A radical expression is an expression with numbers, operations and radicals in it.

Rationalize the denominator

To rationalize the denominator means to rewrite the fraction so that the denominator no longer contains a radical.

Square Number

A square number or perfect square is a whole number that is the square of another integer. For example, 36 is a square number because 6 \cdot 6 = 36.

Variable Expression

A variable expression is a mathematical phrase that contains at least one variable or unknown quantity.

Image Attributions

  1. [1]^ License: CC BY-NC 3.0
  2. [2]^ License: CC BY-NC 3.0

Explore More

Sign in to explore more, including practice questions and solutions for Simplification of Radical Expressions.
Please wait...
Please wait...