<meta http-equiv="refresh" content="1; url=/nojavascript/">
Dismiss
Skip Navigation

Solving Equations with Fractional Exponents

%
Progress
Practice
Progress
%
Practice Now
Solving Rational Exponent Equations

The period (in seconds) of a pendulum with a length of L (in meters) is given by the formula P = 2\pi{(\frac{L}{9.8})}^{\frac{1}{2}} . If the period of a pendulum is 10\pi is the length of the pendulum 156.8?

Guidance

This concept is very similar to the previous two. When solving a rational exponent equation, isolate the variable. Then, to eliminate the exponent, you will need to raise everything to the reciprocal power.

Example A

Determine if x = 9 is a solution to 2x^{\frac{3}{2}}-19=35 .

Solution: Substitute in x and see if the equation holds.

2(9)^{\frac{3}{2}}-19&=35 \\2 \cdot 27 -19 &= 35 \\54 - 19 &= 35

9 is a solution to this equation.

Example B

Solve 3x^{\frac{5}{2}}=96 .

Solution: First, divide both sides by 3 to isolate x .

3x^{\frac{5}{2}}&=96\\x^{\frac{5}{2}}&=32

x is raised to the five-halves power. To cancel out this exponent, we need to raise everything to the two-fifths power.

\left(x^{\frac{5}{2}}\right)^{\frac{2}{5}}&=32^{\frac{2}{5}}\\x&=32^{\frac{2}{5}}\\x&=\sqrt[5]{32}^2=2^2=4

Check: 3(4)^{\frac{5}{2}}=3 \cdot 2^5=3 \cdot 32=96

Example C

Solve -2(x-5)^{\frac{3}{4}}+48=-202 .

Solution: Isolate (x-5)^{\frac{3}{4}} by subtracting 48 and dividing by -2.

-2(x-5)^{\frac{3}{4}}+48&=-202\\-2(x-5)^{\frac{3}{4}}&=-250\\(x-5)^{\frac{3}{4}}&=-125

To undo the three-fourths power, raise everything to the four-thirds power.

\left[ \left(x-5 \right)^{\frac{3}{4}}\right]^{\frac{4}{3}}&=\left(-125 \right)^{\frac{4}{3}}\\x-5&=625\\x&=630

Check: -2(630-5)^{\frac{3}{4}}+48=-2 \cdot 625^{\frac{3}{4}}+48=-2 \cdot 125+48=-250+48=-202

Intro Problem Revisit We need to plug 156.8 in to the equation P = 2\pi{(\frac{L}{9.8})}^{\frac{1}{2}} for L and solve. If our answer equals 10\pi , then the given length is correct.

P = 2\pi{(\frac{L}{9.8})}^{\frac{1}{2}}\\2\pi{(\frac{156.8}{9.8})}^{\frac{1}{2}}\\2\pi (16)^{\frac{1}{2}}\\2\pi (4) = 8 \pi

8\pi does not equal 10\pi , so the length cannot be 156.8.

Guided Practice

Solve the following rational exponent equations and check for extraneous solutions.

1. 8(3x-1)^{\frac{2}{3}}=200

2. 6x^{\frac{3}{2}}-141=1917

Answers

1. Divide both sides by 8 and raise everything to the three-halves power.

8(3x-1)^{\frac{2}{3}}&=200\\\left[ \left(3x-1 \right)^{\frac{2}{3}}\right]^{\frac{3}{2}}&=(25)^{\frac{3}{2}}\\3x-1&=125\\3x&=126\\x&=42

Check: 8(3(42)-1)^{\frac{2}{3}}=8(126-1)^{\frac{2}{3}}=8(125)^{\frac{2}{3}}=8 \cdot 25=200

2. Here, only the x is raised to the three-halves power. Subtract 141 from both sides and divide by 6. Then, eliminate the exponent by raising both sides to the two-thirds power.

6x^{\frac{3}{2}}-141&=1917 \\6x^{\frac{3}{2}}&=2058 \\x^{\frac{3}{2}}&=343 \\x&=343^{\frac{2}{3}}=7^2=49

Check: 6(49)^{\frac{3}{2}}-141=6 \cdot 343-141=2058-141=1917

Explore More

Determine if the following values of x are solutions to the equation 3x^{\frac{3}{5}}=-24

  1. x=32
  2. x=-32
  3. x=8

Solve the following equations. Round any decimal answers to 2 decimal places.

  1. 2x^{\frac{3}{2}}=54
  2. 3x^{\frac{1}{3}}+5=17
  3. (7x-3)^{\frac{2}{5}}=4
  4. (4x+5)^{\frac{1}{2}}=x-4
  5. x^{\frac{5}{2}}=16x^{\frac{1}{2}}
  6. (5x+7)^{\frac{3}{5}}=8
  7. 5x^{\frac{2}{3}}=45
  8. (7x-8)^{\frac{2}{3}}=4(x-5)^{\frac{2}{3}}
  9. 7x^{\frac{3}{7}}+9=65
  10. 4997=5x^{\frac{3}{2}}-3
  11. 2x^{\frac{3}{4}}=686
  12. x^3=(4x-3)^{\frac{3}{2}}

Image Attributions

Explore More

Sign in to explore more, including practice questions and solutions for Solving Equations with Fractional Exponents.

Reviews

Please wait...
Please wait...

Original text


Help us improve the site! Which of the following best describes your visit today?

I'm a student and I found this site on my own.
I'm a student and my teacher told me to come to this site.
I'm a teacher looking for materials to use in class.
I'm preparing for teacher certification exam, e.g. Praxis II.
Other

Thanks for answering this poll. Your feedback will help us continue to improve the site!