<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Skip Navigation
Our Terms of Use (click here to view) have changed. By continuing to use this site, you are agreeing to our new Terms of Use.

Solving Rational Equations using Cross-Multiplication

Solve equations that are fractions on both sides

Atoms Practice
Estimated8 minsto complete
Practice Solving Rational Equations using Cross-Multiplication
Estimated8 minsto complete
Practice Now
Turn In
Solving Rational Equations using Cross-Multiplication

A scale model of a racecar is in the ratio of 1:x to the real racecar. The length of the model is \begin{align*}2x-21\end{align*} units, and the length of the real racecar is \begin{align*}x^2\end{align*} units. What is the value of x?

Solving Rational Equations Using Cross Multiplication

A rational equation is an equation where there are rational expressions on both sides of the equal sign. One way to solve rational equations is to use cross-multiplication. Here is an example of a proportion that we can solve using cross-multiplication.

Let's use cross multiplication to solve the following equations.

  1. \begin{align*}\frac{x}{2x-3}=\frac{3x}{x+11}\end{align*}

Cross-multiply and solve.

Check your answers. It is possible to get extraneous solutions with rational expressions.

\begin{align*}\frac{0}{2 \cdot 0-3}&=\frac{3 \cdot 0}{0+11} && \frac{4}{2 \cdot 4-3}=\frac{3 \cdot 4}{4+11} \\ \frac{0}{-3}&=\frac{0}{11} \ && \qquad \quad \frac{4}{5}=\frac{12}{15} \\ 0&=0 && \qquad \quad \frac{4}{5}=\frac{4}{5}\end{align*}

  1. \begin{align*}\frac{x+1}{4}=\frac{3}{x-3}\end{align*}

Cross-multiply and solve.

\begin{align*}\frac{x+1}{4}&=\frac{3}{x-3} \\ 12&=x^2-2x-3 \\ 0&=x^2-2x-15 \\ 0&=(x-5)(x+3) \\ x&=5 \ and \ -3\end{align*}

Check your answers.

\begin{align*}\frac{5+1}{4}=\frac{3}{5-3} \rightarrow \frac{6}{4}=\frac{3}{2}\end{align*} and

\begin{align*}\frac{-3+1}{4}=\frac{3}{-3-3} \rightarrow \frac{-2}{4}=\frac{3}{-6} \end{align*}

  1. \begin{align*}\frac{x^2}{2x-5}=\frac{x+8}{2}\end{align*}

Cross-multiply and solve.

\begin{align*}\frac{x^2}{2x-5}&=\frac{x+8}{2} \\ 2x^2+11x-40&=2x^2 \\ 11x-40&=0 \\ 11x&=40 \\ x&=\frac{40}{11}\end{align*}

Check the answer: \begin{align*}\frac{\left(\frac{40}{11}\right)^2}{\frac{80}{11}-5}=\frac{\frac{40}{11}+8}{2} \rightarrow \frac{1600}{121} \div \frac{25}{11}=\frac{128}{11} \div 2 \rightarrow \frac{64}{11}=\frac{128}{22}\end{align*}


Example 1

Earlier, you were asked to find the value of x. 

We need to set up a rational equation and solve for x.

\begin{align*}\frac{1}{x} = \frac{2x-21}{x^2}\end{align*}

Now cross-multiply.

\begin{align*}x^2 = x(2x-21)\\ x^2 = 2x^2 - 21x\\ 0 = x^2 - 21x\\ 0 = x(x - 21)\\ x = 0, 21\end{align*}

However, x is a ratio so it must be greater than 0. Therefore x equals 21 and the model is in the ratio 1:21 to the real racecar.

Solve the following rational equations.

Example 2


\begin{align*}\frac{-x}{x-1}&=\frac{x-8}{3} \\ x^2-9x+8&=-3x \\ x^2-6x+8&=0 \\ (x-4)(x-2)&=0\\ x&=4 \ and \ 2\end{align*}

\begin{align*}\text{Check}: x=4 \rightarrow \frac{-4}{4-1}&=\frac{4-8}{3} && x=2 \rightarrow \frac{-2}{2-1}=\frac{2-8}{3} \\ \frac{-4}{3}&=\frac{-4}{3} && \qquad \qquad \quad \frac{-2}{1}=\frac{-6}{3} \end{align*}

Example 3


\begin{align*}\frac{x^2-1}{x+2}&=\frac{2x-1}{2} \\ 2x^2+3x-2&=2x^2-2\\ 3x&=0 \\ x&=0\end{align*}

\begin{align*}\text{Check}: \frac{0^2-1}{0+2}&=\frac{2 \left(0\right)-1}{2} \\ \frac{-1}{2}&=\frac{-1}{2}\end{align*}

Example 4


\begin{align*}\frac{9-x}{x^2}&=\frac{4}{-3x} \\ 4x^2&=-27x+3x^2 \\ x^2+27x&=0 \\ x(x+27)&=0 \\ x&=0 \ and \ -27 \end{align*}

\begin{align*}\text{Check}: x=0 \rightarrow \frac{9-0}{0^2}&=\frac{4}{-3 \left(0\right)} && x=-27 \rightarrow \frac{9+27}{\left(-27\right)^2}=\frac{4}{-3 \left(-27\right)} \\ und&=und && \qquad \qquad \qquad \quad \frac{36}{729}=\frac{4}{81} \\ & && \qquad \qquad \qquad \quad \ \frac{4}{81}=\frac{4}{81}\end{align*}

\begin{align*}x = 0\end{align*} is not actually a solution because it is a vertical asymptote for each rational expression, if graphed. Because zero is not part of the domain, it cannot be a solution, and is extraneous.


  1. Is \begin{align*}x=-2\end{align*} a solution to \begin{align*}\frac{x-1}{x-4}=\frac{x^2-1}{x+4}\end{align*}?

Solve the following rational equations.

  1. \begin{align*}\frac{2x}{x+3}=\frac{8}{x}\end{align*}
  2. \begin{align*}\frac{4}{x+1}=\frac{x+2}{3}\end{align*}
  3. \begin{align*}\frac{x^2}{x+2}=\frac{x+3}{2}\end{align*}
  4. \begin{align*}\frac{3x}{2x-1}=\frac{2x+1}{x}\end{align*}
  5. \begin{align*}\frac{x+2}{x-3}=\frac{x}{3x-2}\end{align*}
  6. \begin{align*}\frac{x+3}{-3}=\frac{2x+6}{x-3}\end{align*}
  7. \begin{align*}\frac{2x+5}{x-1}=\frac{2}{x-4}\end{align*}
  8. \begin{align*}\frac{6x-1}{4x^2}=\frac{3}{2x+5}\end{align*}
  9. \begin{align*}\frac{5x^2+1}{10}=\frac{x^3-8}{2x}\end{align*}
  10. \begin{align*}\frac{x^2-4}{x+4}=\frac{2x-1}{3}\end{align*}

Determine the values of a that make each statement true. If there no values, write none.

  1. \begin{align*}\frac{1}{x-a}=\frac{x}{x+a}\end{align*}, such that there is no solution.
  2. \begin{align*}\frac{1}{x-a}=\frac{x}{x-a}\end{align*}, such that there is no solution.
  3. \begin{align*}\frac{x-a}{x}=\frac{1}{x+a}\end{align*}, such that there is one solution.
  4. \begin{align*}\frac{1}{x+a}=\frac{x}{x-a}\end{align*}, such that there are two integer solutions.

Answers for Review Problems

To see the Review answers, open this PDF file and look for section 9.14. 

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / Notes
Show More


Rational Equation

A rational equation is an equation that contains a rational expression.

Image Attributions

Explore More

Sign in to explore more, including practice questions and solutions for Solving Rational Equations using Cross-Multiplication.
Please wait...
Please wait...