Skip Navigation

Transformations of Quadratic Functions

Explore the effects of changing values in parabolic functions

Atoms Practice
Estimated10 minsto complete
Practice Transformations of Quadratic Functions
This indicates how strong in your memory this concept is
Estimated10 minsto complete
Practice Now
Turn In
Transformations and Vertex Form of Quadratic Functions

Feel free to modify and personalize this study guide by clicking “Customize.”


Word Definitiom
_________________ shifting left and right; change in the x-coordinate
Transformation _____________________________________________________________
Vertical Reflection _____________________________________________________________
Vertical Stretch _____________________________________________________________
_________________ shifting up and down; change in the y-coordinate


What is the equation of the parent graph of quadratic functions? ____________________

To change the appearance of this graph, you use transformations. Transformations strech, compress, shift, or reflect the graph. 


For the following graphs, describe the transformations of \begin{align*}y=x^2\end{align*}.


Click here for answers.


Vertex Form

Vertex form of a parabola is:  \begin{align*} y=a(x-h)^2+k\end{align*}

Describe what each variable does:

  • \begin{align*}a\end{align*}: __________________________________________
  • \begin{align*}h\end{align*}__________________________________________
  • \begin{align*}k\end{align*}__________________________________________

What happens if \begin{align*}a\end{align*} is negative? __________________________________________


Graph the following quadratic functions and identify the transformations.

  1. \begin{align*}y=-2(x+3)^2+7\end{align*}
  2. \begin{align*}y=-\frac{1}{2}(x+6)^2+9\end{align*}
  3. \begin{align*}y=\frac{1}{3}(x-4)^2\end{align*}

Click here for answers.

Explore More

Sign in to explore more, including practice questions and solutions for Use Vertex Form of Quadratics.
Please wait...
Please wait...