<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation

Transformations of Quadratic Functions

Explore the effects of changing values in parabolic functions

Atoms Practice
Estimated10 minsto complete
%
Progress
Practice Transformations of Quadratic Functions
 
 
 
MEMORY METER
This indicates how strong in your memory this concept is
Practice
Progress
Estimated10 minsto complete
%
Practice Now
Turn In
Transformations and Vertex Form of Quadratic Functions

Feel free to modify and personalize this study guide by clicking “Customize.”

Vocabulary

Word Definitiom
_________________ shifting left and right; change in the x-coordinate
Transformation _____________________________________________________________
Vertical Reflection _____________________________________________________________
Vertical Stretch _____________________________________________________________
_________________ shifting up and down; change in the y-coordinate

Transformations

What is the equation of the parent graph of quadratic functions? ____________________

To change the appearance of this graph, you use transformations. Transformations strech, compress, shift, or reflect the graph. 

.

For the following graphs, describe the transformations of \begin{align*}y=x^2\end{align*}.

   

Click here for answers.

.

Vertex Form

Vertex form of a parabola is:  \begin{align*} y=a(x-h)^2+k\end{align*}

Describe what each variable does:

  • \begin{align*}a\end{align*}: __________________________________________
  • \begin{align*}h\end{align*}__________________________________________
  • \begin{align*}k\end{align*}__________________________________________

What happens if \begin{align*}a\end{align*} is negative? __________________________________________

.

Graph the following quadratic functions and identify the transformations.

  1. \begin{align*}y=-2(x+3)^2+7\end{align*}
  2. \begin{align*}y=-\frac{1}{2}(x+6)^2+9\end{align*}
  3. \begin{align*}y=\frac{1}{3}(x-4)^2\end{align*}

Click here for answers.

Explore More

Sign in to explore more, including practice questions and solutions for Use Vertex Form of Quadratics.
Please wait...
Please wait...