<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation
Our Terms of Use (click here to view) and Privacy Policy (click here to view) have changed. By continuing to use this site, you are agreeing to our new Terms of Use and Privacy Policy.

Use Square Roots to Solve Quadratic Equations

Isolate the squared term, take the root of both sides

Atoms Practice
Estimated12 minsto complete
%
Progress
Practice Use Square Roots to Solve Quadratic Equations
Practice
Progress
Estimated12 minsto complete
%
Practice Now
Solving Quadratics Using Square Roots

Mrs. Garber draws a square on the board and writes the equation 4s253=13 on the board. "This equation represents the area," she says. "What is the length of each side (s)?"

Solving Quadratics Using Square Roots

Now that you are familiar with square roots, we will use them to solve quadratic equations. Keep in mind, that square roots cannot be used to solve every type of quadratic. In order to solve a quadratic equation by using square roots, an xterm cannot be present. Solving a quadratic equation by using square roots is very similar to solving a linear equation. In the end, you must isolate the x2 or whatever is being squared.

Solve the following problems using square roots

Solve 2x23=15.

Start by isolating the x2.

2x232x2x2=15=18=9

At this point, you can take the square root of both sides.

x2x=±9=±3

Notice that x has two solutions; 3 or -3. When taking the square root, always put the ± (plus or minus sign) in front of the square root. This indicates that the positive or negative answer will be the solution.

Check:

2(3)23=152(3)23=15 293=15or 293=15183=15183=15

Solve x216+3=27.

Isolate x2 and then take the square root.

x216+3x216x2x=27=24=384=±384=±86

Solve 3(x5)2+7=43.

In this example, x is not the only thing that is squared. Isolate the (x5)2 and then take the square root.

3(x5)2+73(x5)2(x5)2x5=43=36=12=±12 or ±23

Now that the square root is gone, add 5 to both sides.

x5x=±23=5±23

x=5+23 or 523. We can estimate these solutions as decimals; 8.46 or 1.54. Remember, that the most accurate answer includes the radical numbers.

Examples

Example 1

Earlier, you were asked what is the length of each side. 

To find s, isolate s2 and then take the square root.

4s2534s25s2s=13=16=20=±20=±25

Therefore the length of the square's side is 25.

Solve the following quadratic equations.

Example 2

23x214=38

Isolate x2 and take the square root.

23x21423x2x2x=38=52=78=±78

Example 3

11+x2=4x2+5

Combine all like terms, then isolate x2.

11+x23x2x2x=4x2+5=6=2=±2

Example 4

(2x+1)26=19

Isolate what is being squared, take the square root, and then isolate x.

(2x+1)26(2x+1)22x+12xx=19=25=±5=1±5=1±52x=1+52=2 or x=152=3

Review

Solve the following quadratic equations. Reduce answers as much as possible. No decimals.

  1. x2=144
  2. 5x24=16
  3. 810x2=22
  4. (x+2)2=49
  5. 6(x5)2+1=19
  6. 34x219=26
  7. x212=362x2
  8. 9x23=33
  9. 4(x+7)2=52
  10. 2(3x+4)25=45
  11. 13(x10)28=16
  12. (x1)2683=72

Use either factoring or solving by square roots to solve the following quadratic equations.

  1. x216x+55=0
  2. 2x29=27
  3. 6x2+23x=20
  4. Writing Write a set of hints that will help you remember when you should solve an equation by factoring and by square roots. Are there any quadratics that can be solved using either method?
  5. Solve x29=0 by factoring and by using square roots. Which do you think is easier? Why?
  6. Solve (3x2)2+1=17 by using square roots. Then, solve 3x24x4=0 by factoring. What do you notice? What can you conclude?
  7. Real Life Application The aspect ratio of a TV screen is the ratio of the screen’s width to its height. For HDTVs, the aspect ratio is 16:9. What is the width and height of a 42 inch screen TV? (42 inches refers to the length of the screen’s diagonal.) HINT: Use the Pythagorean Theorem. Round your answers to the nearest hundredth.
  8. Real Life Application When an object is dropped, its speed continually increases until it reaches the ground. This scenario can be modeled by the equation \begin{align*}h=-16t^2+h_0\end{align*}, where \begin{align*}h\end{align*} is the height, \begin{align*}t\end{align*} is the time (in seconds), and \begin{align*}h_0\end{align*}is the initial height of the object. Round your answers to the nearest hundredth.
    1. If you drop a ball from 200 feet, what is the height after 2 seconds?
    2. After how many seconds will the ball hit the ground?

Answers for Review Problems

To see the Review More answers, open this PDF file and look for section 5.7. 

Vocabulary

Perfect Square

A perfect square is a number whose square root is an integer.

Roots

The roots of a function are the values of x that make y equal to zero.

Zeroes

The zeroes of a function f(x) are the values of x that cause f(x) to be equal to zero.

Image Attributions

Explore More

Sign in to explore more, including practice questions and solutions for Use Square Roots to Solve Quadratic Equations.
Please wait...
Please wait...