<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation
Our Terms of Use (click here to view) and Privacy Policy (click here to view) have changed. By continuing to use this site, you are agreeing to our new Terms of Use and Privacy Policy.
You are viewing an older version of this Study Guide. Go to the latest version.

Binomial Theorem and Expansions

Expansion of binomials raised to a power using combinations.

Atoms Practice
Estimated21 minsto complete
%
Progress
Practice Binomial Theorem and Expansions
Practice
Progress
Estimated21 minsto complete
%
Practice Now
Combinations and the Binomial Theorem

Vocabulary

Complete the chart.
Word Definition
Combination ____________________________________________________________
Factorial ____________________________________________________________
Binomial Theorem ____________________________________________________________
_______________ the process of raising a binomial such as (x + 2) to a power
_______________ a pyramid of sorts constructed with the coefficients of binomials as they are expanded

Factorials and Combinations

Expand \begin{align*}n! =\end{align*} ___________________________________

Simplify and Evaluate the Factorials:

  1. \begin{align*}\frac{(a + 3)!}{(a + 4)!}\end{align*}
  2. \begin{align*}\frac{5!}{4! 2!}\end{align*}
  3. \begin{align*}\frac{11!}{7!}\end{align*}

Solve

  1. \begin{align*} _{9}C_{7}\end{align*}
  2. \begin{align*} _{5}C_{2}\end{align*}
  3. The local TV station forecasts a 14% chance of rain every day for the next week. What is the probability that it will rain on exactly 4 out of the next 7 days?

Click here for answers.

.

Binomial Theorem and Expansions

Pascal's Triangle can help expand binomials. 

It follows the pattern \begin{align*}\binom{n} {r - 1} + \binom{n} {r} = \binom{n + 1} {r}\end{align*} .

.

When you expand ( x + y ) n , the exponents of x ______________ whille the exponents of y ______________. 

What is the Binomial Theorem in summation form? _________________________

Explain how finding a term in an expansion can be used to answer a particular kind of probability question. _____________________________________________________________________________________________________________________________________________

.

  1. Expand: \begin{align*}(3x+a)^{5}\end{align*}
  2. Expand: \begin{align*}(x - y)^7\end{align*}
  3. Expand: \begin{align*}(2x + 3)^4\end{align*}
  4. Find the 5th term in the expansion \begin{align*}(4x-3a)^{9}\end{align*} .
  5. What is the coefficient of \begin{align*}x^5\end{align*} in the expansion of \begin{align*}(3x + 4) ^6\end{align*} ?

Click here for answers.

My Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / notes
Show More

Image Attributions

Explore More

Sign in to explore more, including practice questions and solutions for Factorials and Combinations.
Please wait...
Please wait...