Skip Navigation
You are viewing an older version of this Study Guide. Go to the latest version.

Binomial Theorem and Expansions

Expansion of binomials raised to a power using combinations.

Atoms Practice
Estimated20 minsto complete
Practice Binomial Theorem and Expansions
This indicates how strong in your memory this concept is
Estimated20 minsto complete
Practice Now
Turn In
Combinations and the Binomial Theorem


Complete the chart.
Word Definition
Combination ____________________________________________________________
Factorial ____________________________________________________________
Binomial Theorem ____________________________________________________________
_______________ the process of raising a binomial such as (x + 2) to a power
_______________ a pyramid of sorts constructed with the coefficients of binomials as they are expanded

Factorials and Combinations

Expand \begin{align*}n! =\end{align*} ___________________________________

Simplify and Evaluate the Factorials:

  1. \begin{align*}\frac{(a + 3)!}{(a + 4)!}\end{align*}
  2. \begin{align*}\frac{5!}{4! 2!}\end{align*}
  3. \begin{align*}\frac{11!}{7!}\end{align*}


  1. \begin{align*} _{9}C_{7}\end{align*}
  2. \begin{align*} _{5}C_{2}\end{align*}
  3. The local TV station forecasts a 14% chance of rain every day for the next week. What is the probability that it will rain on exactly 4 out of the next 7 days?

Click here for answers.


Binomial Theorem and Expansions

Pascal's Triangle can help expand binomials. 

It follows the pattern \begin{align*}\binom{n} {r - 1} + \binom{n} {r} = \binom{n + 1} {r}\end{align*} .


When you expand ( x + y ) n , the exponents of x ______________ whille the exponents of y ______________. 

What is the Binomial Theorem in summation form? _________________________

Explain how finding a term in an expansion can be used to answer a particular kind of probability question. _____________________________________________________________________________________________________________________________________________


  1. Expand: \begin{align*}(3x+a)^{5}\end{align*}
  2. Expand: \begin{align*}(x - y)^7\end{align*}
  3. Expand: \begin{align*}(2x + 3)^4\end{align*}
  4. Find the 5th term in the expansion \begin{align*}(4x-3a)^{9}\end{align*} .
  5. What is the coefficient of \begin{align*}x^5\end{align*} in the expansion of \begin{align*}(3x + 4) ^6\end{align*} ?

Click here for answers.

Explore More

Sign in to explore more, including practice questions and solutions for Factorials and Combinations.
Please wait...
Please wait...