You are viewing an older version of this Study Guide. Go to the latest version.

# Binomial Theorem and Expansions

## Expansion of binomials raised to a power using combinations.

Estimated20 minsto complete
%
Progress
Practice Binomial Theorem and Expansions

MEMORY METER
This indicates how strong in your memory this concept is
Progress
Estimated20 minsto complete
%
Combinations and the Binomial Theorem

### Vocabulary

##### Complete the chart.
 Word Definition Combination ____________________________________________________________ Factorial ____________________________________________________________ Binomial Theorem ____________________________________________________________ _______________ the process of raising a binomial such as (x + 2) to a power _______________ a pyramid of sorts constructed with the coefficients of binomials as they are expanded

### Factorials and Combinations

Expand \begin{align*}n! =\end{align*} ___________________________________

Simplify and Evaluate the Factorials:

1. \begin{align*}\frac{(a + 3)!}{(a + 4)!}\end{align*}
2. \begin{align*}\frac{5!}{4! 2!}\end{align*}
3. \begin{align*}\frac{11!}{7!}\end{align*}

Solve

1. \begin{align*} _{9}C_{7}\end{align*}
2. \begin{align*} _{5}C_{2}\end{align*}
3. The local TV station forecasts a 14% chance of rain every day for the next week. What is the probability that it will rain on exactly 4 out of the next 7 days?

.

#### Binomial Theorem and Expansions

Pascal's Triangle can help expand binomials.

It follows the pattern \begin{align*}\binom{n} {r - 1} + \binom{n} {r} = \binom{n + 1} {r}\end{align*} .

.

When you expand ( x + y ) n , the exponents of x ______________ whille the exponents of y ______________.

What is the Binomial Theorem in summation form? _________________________

Explain how finding a term in an expansion can be used to answer a particular kind of probability question. _____________________________________________________________________________________________________________________________________________

.

1. Expand: \begin{align*}(3x+a)^{5}\end{align*}
2. Expand: \begin{align*}(x - y)^7\end{align*}
3. Expand: \begin{align*}(2x + 3)^4\end{align*}
4. Find the 5th term in the expansion \begin{align*}(4x-3a)^{9}\end{align*} .
5. What is the coefficient of \begin{align*}x^5\end{align*} in the expansion of \begin{align*}(3x + 4) ^6\end{align*} ?