You are viewing an older version of this Study Guide. Go to the latest version.

# Combining Transformations

## Order of shifts, stretches, compressions, and reflections of a parent function.

Estimated6 minsto complete
%
Progress
Practice Combining Transformations

MEMORY METER
This indicates how strong in your memory this concept is
Progress
Estimated6 minsto complete
%
Transforming Functions

### Vocabulary

 Word Definition ____________ Also called translation or slide; a transformation applied to the graph of a function which does not change the shape of the graph, only the location ____________ a result of adding a constant term to the value of a function; moves up or down Horizontal Shift _________________________________________________________________ Reflection _________________________________________________________________ ____________ A transformation which results in the width of a graph being increased or decreased; the result of the co-efficient of the x term being between 0 and 1. Compression _________________________________________________________________

What transformations must be applied to \begin{align*}y = x^{2}\end{align*} , in order to graph \begin{align*}g(x) = 3(x - 4)^{2} + 2\end{align*} ?

### Practice

1. If a function is multiplied by a coefficient, what will happen to the graph of the function?
2. What does multiplying x by a number greater than one create?
3. What happens when we multiply x by a number between 0 and 1
4. In order to obtain a reflection over the y axis what do we have to do to x?
5. How do we obtain a reflection over the x-axis?
6. Write a function that will create a horizontal compression of the following: \begin{align*}f(x) = x^2 + 3\end{align*}
7. Write a function that will horizontally stretch the following: \begin{align*}f(x) = x^2 - 6\end{align*}
8. Rewrite this function \begin{align*}f(x) = -\sqrt{x}\end{align*} to get a reflection over the x-axis.
9. Rewrite this function \begin{align*}f(x) = \sqrt{x}\end{align*} to get a reflection over the y-axis.
##### Graph each of the following using transformations. Identify which transformations are used.
1. \begin{align*}f(x) = |x-3| + 4\end{align*}
2. \begin{align*}h(x) = \sqrt{x + 7}\end{align*}
3. \begin{align*}g(x) = \frac{1}{x - 5}\end{align*}
4. \begin{align*}f(x) = -3x^3\end{align*}
5. \begin{align*}h(x) = (x - 7)^3 + 4\end{align*}
6. \begin{align*}f(x) = \frac{1}{4}(x - 9)^2 + 5\end{align*}
7. \begin{align*}f(x) = 3\sqrt{x + 2} - 6\end{align*}
8. \begin{align*}f(x) = \frac{3}{4(x + 5)} + \frac{4}{5}\end{align*}
1. What part of the function \begin{align*}g(x) = -(f(x) + 1) = -(x^3 + 1)\end{align*} shifts the graph of \begin{align*}f(x)\end{align*}vertically?
2. What part of the function \begin{align*}g(x) = -(f(x) + 1)\end{align*} reflects the graph of \begin{align*}f(x)\end{align*} across the x-axis?
3. What is different between the functions \begin{align*}g(x) = -(x^3 + 1.0)\end{align*} and \begin{align*}h(x) = -x^3 + 1.0\end{align*} that changes the appearance of the graph?
4. Write a function \begin{align*}g(x)\end{align*} whose graph looks like the graph of \begin{align*}f(x) = |x|\end{align*} reflected across the x-axis and shifted up 1 unit. \begin{align*}g(x) =\end{align*}
5. How do you transform the graph of: \begin{align*}f(x) = x^3\end{align*} so that it looks like the graph of:\begin{align*}f(x) = 4x^3 + 6\end{align*}
1. Stretch it by a factor of ¼ and shift it up 6 units.
2. Stretch it by a factor of 6 and shift it left 4 units.
3. Stretch it by a factor of 4 and shift it down 6 units.
4. Stretch it by a factor of 4 and shift it up 6 units.

Click for more help on:

### Explore More

Sign in to explore more, including practice questions and solutions for Vertical and Horizontal Transformations.