<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation

Definition of a Limit

Describes end behavior or behavior of a function at a point.

Atoms Practice
%
Progress
 
 
 
MEMORY METER
This indicates how strong in your memory this concept is
Practice
Progress
%
Practice Now
Turn In
Limit Notation

When learning about the end behavior of a rational function you described the function as either having a horizontal asymptote at zero or another number, or going to infinity. Limit notation is a way of describing this end behavior mathematically.

You already know that as  gets extremely large then the function  goes to  because the greatest powers are equal and  is the ratio of the leading coefficients. How is this statement represented using limit notation?

Introduction to Limits

Limit notation is a way of stating an idea that is a little more subtle than simply saying  or .

“The limit of of  as  approaches  is 

The letter  can be any number or infinity. The function is any function of . The letter  can be any number. If the function goes to infinity, then instead of writing “” you should write that the limit does not exist or “DNE”. This is because infinity is not a number. If a function goes to infinity then it has no limit.

Take the following limit: 

The limit of  as  approaches 2 is 16

In limit notation, this would be: 

While a function may never actually reach a height of  it will get arbitrarily close to . One way to think about the concept of a limit is to use a physical example. Stand some distance from a wall and then take a big step to get halfway to the wall. Take another step to go halfway to the wall again. If you keep taking steps that take you halfway to the wall then two things will happen. First, you will get extremely close to the wall but never actually reach the wall regardless of how many steps you take. Second, an observer who wishes to describe your situation would notice that the wall acts as a limit to how far you can go.

Examples

Example 1

Earlier, you were asked how to write the statement "The limit of  as  approaches infinity is " in limit notation. 

This can be written using limit notation as:

Example 2

Translate the following mathematical statement into words.

The limit of the sum of  as the number of terms approaches infinity is 1.

Example 3

Use limit notation to represent the following mathematical statement.

Example 4

Describe the end behavior of the following rational function at infinity and negative infinity using limits

Since the function has equal powers of  in the numerator and in the denominator, the end behavior is  as  goes to both positive and negative infinity.

Example 5

Translate the following limit expression into words. What do you notice about the limit expression?

The limit of the ratio of the difference between  of quantity plus and of and  as approaches 0 is .

You should notice that does not mean because if it did then you could not have a 0 in the denominator. You should also note that in the numerator, and are going to be super close together as approaches zero. Calculus will enable you to deal with problems that seem to look like and .

Review

Describe the end behavior of the following rational functions at infinity and negative infinity using limits.

1. 

2.

3.

4.

5.

Translate the following statements into limit notation.

6. The limit of  as  approaches 3 is 19.

7. The limit of  as  approaches negative infinity is 0.

8. The limit of  as  approaches infinity is 0.

Use limit notation to represent the following mathematical statements.

9. 

10. The series diverges.

11.

12.

Translate the following mathematical statements into words. 

13.

14.

15. If , is it possible that ?  Explain.

Review (Answers)

To see the Review answers, open this PDF file and look for section 14.1. 

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / Notes
Show More

Vocabulary

End behavior

End behavior is a description of the trend of a function as input values become very large or very small, represented as the 'ends' of a graphed function.

Horizontal Asymptote

A horizontal asymptote is a horizontal line that indicates where a function flattens out as the independent variable gets very large or very small. A function may touch or pass through a horizontal asymptote.

limit notation

Limit notation is a way of expressing the fact that a function gets arbitrarily close to a value.

Image Attributions

Explore More

Sign in to explore more, including practice questions and solutions for Definition of a Limit.
Please wait...
Please wait...