Hyperbola Equations and the Focal Property

Set of points in a plane whose distances to two foci have the same difference.

%
Progress

MEMORY METER
This indicates how strong in your memory this concept is
Progress
%
Conic Sections: Hyperbolas

Feel free to modify and personalize this study guide by clicking “Customize.”

Vocabulary

Complete the chart.
 Word Definition Hyperbola ________________________________________________________________ ________________ a shape is so large that no circle, no matter how large, can enclose the shape ________________ a line which a curve approaches as the curve and the line approach infinity Perpendicular hyperbola ________________________________________________________________

Hyperbolas

Hyperbolas two foci, and they can be defined as the set of points in a plane whose distances to these two points have the same difference . So in the picture below, for every point\begin{align*}P\end{align*} on the hyperbola, \begin{align*}|d_2 - d_1| = C\end{align*} for some constant \begin{align*}C\end{align*} .

What is the general form for a hyperbola that opens upwards and downwards and whose foci lie on the \begin{align*}y-\end{align*} axis? ___________________________

What is the shifted equation for a hyperbola that is centered around the point \begin{align*}(h,k)\end{align*} opening up and down? ___________________________

Left and right? ___________________________

.

Sketch the Hyperbolas:

1. \begin{align*}\frac{y^2}{4} - \frac{(x - 1)^2}{4} = 9\end{align*}
2. \begin{align*}\frac{(x - 2)^2}{9} - \frac{(y + 4)^2}{4} = 1\end{align*}
3. \begin{align*}\frac{(x - 3)^2}{9} - \frac{(y + 1)^2}{16} = 1\end{align*}

Identify the equation of the hyperbola using the image:

.

Asymtotes

For a hyperbola of the form \begin{align*}\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\end{align*} , which lines are the asymtotes?

_______________________    _______________________

What about the form \begin{align*}\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1\end{align*}?

_______________________    _______________________

.

Find the equations of the asymptotes:

1. \begin{align*}\frac{(x - 1)^2}{1} - \frac{9(y + 4)^2}{1} = 9\end{align*}
2. \begin{align*}\frac{(y + 2)^2}{16} - \frac{(x - 2)^2}{1} = 1\end{align*}
3. \begin{align*}\frac{(x - 4)^2}{1} - \frac{(y + 1)^2}{4} = 1\end{align*}
4. \begin{align*}\frac{y^2}{16} - \frac{(x + 1)^2}{4} = 1\end{align*}
Graph the hyperbolas, give the equation of the asymptotes, use the asymptotes to enhance the accuracy of your graph.
1. \begin{align*}\frac{(x - 2)^2}{16} - \frac{(y + 4)^2}{1} = 1\end{align*}
2. \begin{align*}\frac{(x + 2)^2}{9} - \frac{(y + 2)^2}{16} = 1\end{align*}
3. \begin{align*}\frac{(x + 4)^2}{9} - \frac{(y - 2)^2}{4} = 1\end{align*}

.