<meta http-equiv="refresh" content="1; url=/nojavascript/"> Induction and Factors ( Study Aids ) | Analysis | CK-12 Foundation
Dismiss
Skip Navigation

Induction and Factors

%
Progress
Practice
Progress
%
Practice Now
Inductive Proofs

Feel free to modify and personalize this study guide by clicking “Customize.”

Vocabulary

Complete the chart.
Word Definition
Mathematical Induction ________________________________________________________
______________ the total of all of the numbers in a series
nth term ________________________________________________________
______________ a number or an expression that is multiplied with other factors to create a product
______________ the product of the positive integers from 1 to some value n: n! = 1 × 2 × 3 × 4...× (n-1) × n
Inequality ________________________________________________________
Postulate ________________________________________________________

Inductive Proofs

Steps of Mathematical Induction:

Step 1) The base case: prove that the statement is true for __________________. Often with induction you may want to expand the first step by showing that the statement is true for several _______________.

Step 2) The inductive hypothesis: assume that the statement is true for ________________. 

Step 3) The inductive step: use the inductive hypothesis to show that the statement is true for ______________.

Apply these steps to the integer sum formula:

Step 1) _______________________________________________________________

Step 2) _______________________________________________________________

Step 3) _______________________________________________________________

.

Use induction to prove the following:
  1. - 1 - 5 - 9 + ... - 4k + 3 = k(-2k + 1)
  2. 1 + 4 + 4^2 + 4^3 + ... + 4^k = \frac{4^{k+1} - 1}{4 - 1}
  3. 3 + 6 + 9 + ... + 3k = \frac{3}{2} k(k+ 1)
  4. -1 - 3 - 5 + ... - 2k + 1 = k(-k)
.
Click here for answers.
.

Induction and Factors

Properties of Integers and their Factors

Complete the properties and prove with induction.

Property 1 : If is a factor of , and is a factor of , then is a factor of _____________.

Proof: _________________________________________________________

Property 2 : If is a factor of and is a factor of , then is a factor of ____________.

Proof: _________________________________________________________

.

  1. Without adding, determine if 8 a factor of 56 + 80
  2. Proove: 1^3 + 2^3 + 3^3 + ... + n^3 = \frac{n^2(n + 1)^2}{4}
  3. Proove: n^2 \frac{(n + 1)^2}{4} = 1^3 + 2^3 + 3^3 + ... + n^3
  4. Prove that 3 is a factor of n^3 + 2n for all positive integers .
.
Click here for answers.
.

Induction and Inequalities

Describe the following properties of inequalities:

Transitive Property: _________________________________________________

Addition Property: _________________________________________________

Multiplication Property: _________________________________________________

.

Prove the following inequalities:

  1. The side length of a pentagon is less than the sum of all its other side lengths.
  2. Given: x_1, ..., x_n are positive numbers, prove the following: \frac{(x_1+ ...+ x_n)}{n} \geq (x_1 \cdot ...\cdot x_n)^{\frac{1}{n}}
  3. n! \geq 3^n for n = 7, 8, 9, ....

.

Click here for answers.

Image Attributions

Explore More

Sign in to explore more, including practice questions and solutions for Inductive Proofs.

Reviews

Please wait...
Please wait...

Original text