<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Skip Navigation
Our Terms of Use (click here to view) have changed. By continuing to use this site, you are agreeing to our new Terms of Use.

Inverse Properties of Logarithms

Simplify expressions using two properties of inverse logs

Atoms Practice
Estimated5 minsto complete
Practice Inverse Properties of Logarithms
This indicates how strong in your memory this concept is
Estimated5 minsto complete
Practice Now
Turn In
Inverse Properties of Logarithmic Functions

If you continue to study mathematics into college, you may take a course called Differential Equations. There you will learn that the solution to the differential equation \begin{align*}y' = y\end{align*} is the general function \begin{align*}y = Ce^x\end{align*}. What is the inverse of this function?

Inverse Properties of Logarithms

By the definition of a logarithm, it is the inverse of an exponent. Therefore, a logarithmic function is the inverse of an exponential function. Recall what it means to be an inverse of a function. When two inverses are composed, they equal \begin{align*}x\end{align*}. Therefore, if \begin{align*}f(x)=b^x\end{align*} and \begin{align*}g(x)=\log_b x\end{align*}, then:

\begin{align*}f \circ g=b^{\log_b x}=x\end{align*} and \begin{align*}g \circ f =\log_b b^x=x\end{align*}

These are called the Inverse Properties of Logarithms.

Let's solve the following problems. We will use the Inverse Properties of Logarithms.

  1. Find \begin{align*}10^{\log 56}\end{align*}.

Using the first property, we see that the bases cancel each other out. \begin{align*}10^{\log 56}=56\end{align*}

\begin{align*}e^{\ln6} \cdot e^{\ln2}\end{align*}

Here, \begin{align*}e\end{align*} and the natural log cancel out and we are left with \begin{align*}6 \cdot 2=12\end{align*}.

  1. Find \begin{align*}\log_4 16^x\end{align*}.

We will use the second property here. Also, rewrite 16 as \begin{align*}4^2\end{align*}.

\begin{align*}\log_4 16^x=\log_4 (4^2)^x=\log_4 4^{2x}=2x\end{align*}

  1. Find the inverse of \begin{align*}f(x)=2e^{x-1}\end{align*}.

Change \begin{align*}f(x)\end{align*} to \begin{align*}y\end{align*}. Then, switch \begin{align*}x\end{align*} and \begin{align*}y\end{align*}.

\begin{align*}& y=2e^{x-1} \\ & x=2e^{y-1}\end{align*}

Now, we need to isolate the exponent and take the logarithm of both sides. First divide by 2.

\begin{align*}& \frac{x}{2}=e^{y-1} \\ & \ln \left(\frac{x}{2}\right)= \ln e^{y-1}\end{align*}

Recall the Inverse Properties of Logarithms from earlier in this concept. \begin{align*}\log_b b^x=x\end{align*}; applying this to the right side of our equation, we have \begin{align*}\ln e^{y-1}=y-1\end{align*}. Solve for \begin{align*}y\end{align*}.

\begin{align*}& \ln \left(\frac{x}{2}\right)=y-1 \\ & \ln \left(\frac{x}{2}\right)+1=y\end{align*}

Therefore, \begin{align*}\ln \left(\frac{x}{2}\right)+1\end{align*} is the inverse of \begin{align*}2e^{y-1}\end{align*}.


Example 1

Earlier, you were asked to find the inverse of  \begin{align*}y = Ce^x\end{align*}.

Switch x and y in the function \begin{align*}y = Ce^x\end{align*} and then solve for y.

\begin{align*}x = Ce^y\\ \frac{x}{C} = e^y\\ ln \frac{x}{C} = ln (e^y)\\ ln \frac{x}{C} = y\end{align*}

Therefore, the inverse of \begin{align*}y = Ce^x\end{align*} is \begin{align*}y = ln \frac{x}{C}\end{align*}.

Example 2

Simplify \begin{align*}5^{\log_5 6x}\end{align*}.

Using the first inverse property, the log and the base cancel out, leaving \begin{align*}6x\end{align*} as the answer.

\begin{align*}5^{\log_5 6x}=6x\end{align*}

Example 3

Simplify \begin{align*}\log_9 81^{x+2}\end{align*}.

Using the second inverse property and changing 81 into \begin{align*}9^2\end{align*} we have:

\begin{align*}\log_9 81^{x+2} &= \log_9 9^{2(x+2)} \\ &= 2(x+2) \\ &= 2x+4\end{align*}

Example 4

Find the inverse of \begin{align*}f(x)=4^{x+2}-5\end{align*}.

\begin{align*}f(x) &= 4^{x+2}-5 \\ y &= 4^{x+2}-5 \\ x &= 4^{y+2}-5 \\ x+5 &= 4^{y+2} \\ \log_4 (x+5) &= y+2 \\ \log_4 (x+5)-2 &= y \end{align*}


Use the Inverse Properties of Logarithms to simplify the following expressions.

  1. \begin{align*}\log_3 27^x\end{align*}
  2. \begin{align*}\log_5 \left(\frac{1}{5}\right)^x\end{align*}
  3. \begin{align*}\log_2 \left(\frac{1}{32}\right)^x\end{align*}
  4. \begin{align*}10^{\log(x+3)}\end{align*}
  5. \begin{align*}\log_6 36^{(x-1)}\end{align*}
  6. \begin{align*}9^{\log_9(3x)}\end{align*}
  7. \begin{align*}e^{\ln(x-7)}\end{align*}
  8. \begin{align*}\log \left(\frac{1}{100}\right)^{3x}\end{align*}
  9. \begin{align*}\ln e^{(5x-3)}\end{align*}

Find the inverse of each of the following exponential functions.

  1. \begin{align*}y=3e^{x+2}\end{align*}
  2. \begin{align*}f(x)=\frac{1}{5}e^\frac{x}{7}\end{align*}
  3. \begin{align*}y=2+e^{2x-3}\end{align*}
  4. \begin{align*}f(x)=7^{\frac{3}{x}+1-5}\end{align*}
  5. \begin{align*}y=2(6)^\frac{x-5}{2}\end{align*}
  6. \begin{align*}f(x)=\frac{1}{3}(8)^{\frac{x}{2}-5}\end{align*}

Answers for Review Problems

To see the Review answers, open this PDF file and look for section 8.6. 

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / Notes
Show More


Inverse Properties of Logarithms

The inverse properties of logarithms are \log_b b^x=x and b^{\log_b x}=x, b \ne 1.

Image Attributions

Explore More

Sign in to explore more, including practice questions and solutions for Inverse Properties of Logarithms.
Please wait...
Please wait...