Most functions continue beyond the viewing window in our calculator or computer. People often draw an arrow next to a dotted line to indicate the pattern specifically. How can you recognize these asymptotes?

#### Watch This

http://www.youtube.com/watch?v=y78Dpr9LLN0 James Sousa: Summary of End Behavior or Long Run Behavior of Polynomial Functions

#### Guidance

A vertical asymptote is a vertical line such as \begin{align*}x = 1\end{align*}

A horizontal asymptote is a horizontal line such as \begin{align*}y = 4\end{align*}*A function may touch or pass through a horizontal asymptote. *

The reciprocal function has two asymptotes, one vertical and one horizontal. Most computers and calculators do not draw the asymptotes and so they must be inserted by hand as dotted lines.

The reason why asymptotes are important is because when your perspective is zoomed way out, the asymptotes essentially become the graph.

**Example A**

Many students have the misconception that an asymptote is a line that a function gets infinitely close to *but does not touch*. This is not true. Identify the horizontal asymptote for the following function.

**Solution: **

The graph appears to flatten as \begin{align*}x\end{align*}

**Example B**

Identify the asymptotes and end behavior of the following function.

**Solution:**

The function has a horizontal asymptote \begin{align*}y = 2\end{align*}*Note that slant asymptotes do exist and are called oblique asymptotes.*

**Example C**

Identify the asymptotes and end behavior of the following function.

**Solution:**

There is a vertical asymptote at \begin{align*}x = 0\end{align*}

**Concept Problem Revisited**

Asymptotes written by hand are usually identified with dotted lines next to the function that indicate how the function will behave outside the viewing window. The equations of these vertical and horizontal dotted lines are of the form \begin{align*}x =\underline{\;\;\;\;\;\;\;\;\;}\end{align*}

#### Vocabulary

An ** asymptote** is a line that a function gets arbitrarily close to. The function may touch horizontal asymptotes, but never touch vertical asymptotes.

A ** piecewise function** is a function defined to be part one function and part another function.

#### Guided Practice

1. Identify the horizontal and vertical asymptotes of the following function.

2. Identify the horizontal and vertical asymptotes of the following function.

3. Identify the horizontal and vertical asymptotes of the following piecewise function:

\begin{align*}f(x) =
\begin{cases}
e^x - 1 & x \le 0 \\
\sin x & 0 < x
\end{cases}\end{align*}

**Answers:**

1. There is a vertical asymptote at \begin{align*}x = 0\end{align*}

2. There is a vertical asymptote at \begin{align*}x = 2\end{align*}

3. There is a horizontal asymptote at \begin{align*}y = -1\end{align*}

#### Practice

Identify the asymptotes and end behavior of the following functions.

1. \begin{align*}y = x\end{align*}

2. \begin{align*}y = x^2\end{align*}

3. \begin{align*}y = x^3\end{align*}

4. \begin{align*}y = \sqrt{x}\end{align*}

5. \begin{align*}y = \frac{1}{x}\end{align*}

6. \begin{align*}y = e^x\end{align*}

7. \begin{align*}y = \ln (x)\end{align*}

8. \begin{align*}y = \frac{1}{1 + e^{-x}}\end{align*}

9.

10.

11.

12. Vertical asymptotes occur at \begin{align*}x\end{align*} values where a function is not defined. Explain why it makes sense that \begin{align*}y = \frac{1}{x}\end{align*} has a vertical asymptote at \begin{align*}x = 0\end{align*}.

13. Vertical asymptotes occur at \begin{align*}x\end{align*} values where a function is not defined. Explain why it makes sense that \begin{align*}y = \frac{1}{x + 3}\end{align*} has a vertical asymptote at \begin{align*}x = -3\end{align*}.

14. Use the technique from the previous problem to determine the vertical asymptote for the function \begin{align*}y = \frac{1}{x - 2}\end{align*}.

15. Use the technique from problem #13 to determine the vertical asymptote for the function \begin{align*}y = \frac{2}{x + 4}\end{align*}.