<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Skip Navigation

Polar Form of Complex Numbers

Conversion of a + bi to (a, b), (r, theta), and rcistheta.

Atoms Practice
Practice Polar Form of Complex Numbers
Practice Now
Polar Form of Complex Numbers

Feel free to modify and personalize this study guide by clicking “Customize.”


Complete the table.
Word Definition
Reference angle ____________________________________________________________
rcisθ ____________________________________________________________

Polar Form

There are multiple forms a number can take. These five bullets all represent the same number:

  • complex number: z = -1 - \sqrt{3}i  
  • rectangular point (-1, -\sqrt{3})  
  • polar point:\left (2, \frac{4\pi} {3}\right ) 
  •  2 \left (\mbox{cos}\ \frac{4\pi} {3} + i\ \mbox{sin}\ \frac{4\pi} {3}\right ) 
  •  2\ \mbox{cis}\ \left (\frac{4\pi} {3}\right ) 

1) Plot the complex number z = 12 + 9i

a) What is needed in order to plot this point on the polar plane?
b) How could the r-value be determined?
c) What is the r for this point?
d) How could \theta be determined?
e) What is \theta for this point?
f) What would  z = 12 + 9i look like on the polar plane?

2) What quadrant does z = -3 + 2i occur in when graphed?

3) What are the coordinates of z = -3 + 2i in polar form and trigonometric form?

4) What would be the polar coordinates of the point graphed below?


Change to polar form

  1. -3 -2i
  2.  2\sqrt{3}  - 2i
Change to rectangular form
  1. 15 (cos 120^o + i sin 120^o)
  2. 12 \left( cos \frac{\pi}{3} + i sin \frac{\pi}{3} \right)
  3. For the complex number in standard form x + iy find: a) Polar Form b) Trigonometric Form (Hint: Recall that x = r cos \theta and y = r sin \theta )
Click here for answers.

Image Attributions


Please wait...
Please wait...

Original text