<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation
Our Terms of Use (click here to view) have changed. By continuing to use this site, you are agreeing to our new Terms of Use.

Polynomial and Rational Inequalities

Roots, asymptotes, intervals, and test points used to find solution sets.

Atoms Practice
Estimated10 minsto complete
%
Progress
Practice Polynomial and Rational Inequalities
Practice
Progress
Estimated10 minsto complete
%
Practice Now
Turn In
Rational Inequalities

Rational Inequalities

There is one step added to the process of solving rational inequalities because a rational function can also change signs at its vertical asymptotes or at a break in the graph. For instance, look at the graph of the function \begin{align*}r(x)=\frac{x}{x^{2}-9}\end{align*} below.

If we want to solve the inequality \begin{align*}\frac{x}{x^{2}-9}>0\end{align*}, then we need to use the following critical points: \begin{align*}x=0, x=3,\end{align*} and \begin{align*}x=-3\end{align*}. \begin{align*}x=0\end{align*} is the solution of setting the numerator equal to 0, and this gives us the only root of the function. \begin{align*}x=\pm3\end{align*} are the vertical asymptotes, the \begin{align*}x-\end{align*}coordinates that make the function undefined because putting in 3 or -3 for \begin{align*}x\end{align*} will cause a division by zero.

Testing the intervals between each critical point to see if the values in that interval satisfy the function gives us:

Interval Test Point Positive/Negative? Part of Solution set?
\begin{align*}(-\infty,-3)\end{align*} -4 - no
(-3, 0) -2 + yes
(0, 3) 2 - no
\begin{align*}(3,+\infty)\end{align*} 4 + yes

Thus, the solutions to \begin{align*}\frac{x}{x^{2}-9}>0\end{align*} are \begin{align*}x\in(-3,0)\cup(3,+\infty)\end{align*}.

 

Guided Practice

Questions

1) \begin{align*}f(x) \geq \frac{2x+5}{x-1}\end{align*}

2) \begin{align*}f(x) \leq \frac{x+2}{x^{2}+1}\end{align*}

Solutions

 

 

1) To identify the graph of the inequality \begin{align*}f(x) \geq \frac{2x+5}{x-1}\end{align*}, first treat it as if it were the equality \begin{align*}f(x) \geq \frac{2x+5}{x-1}\end{align*}

For \begin{align*}f(x) \geq \frac{2x+5}{x-1} :\end{align*}
To find the critical points, identify the value(s) which make the denominator = 0: \begin{align*}x\ne 1\end{align*}
That gives us a vertical asymptote of \begin{align*}x=1\end{align*}
The horizontal asymptote becomes apparent as x becomes truly huge and the "+5" and "-1" no longer matter. At that point, we have \begin{align*}f(x) = \frac{2x}{x} \to f(x) = 2\end{align*} So the horizontal asymptote is \begin{align*}y=2\end{align*}
Now that you know the shape of the graph, simply shade the area above the lines, since the original function was f(x) is greater-than function, and leave the lines solid since it was a greater-than or equal to.
The final graph should look like:

2) To graph \begin{align*}f(x) \leq \frac{x+2}{x^{2}+1}\end{align*} first treat it as if it were \begin{align*}f(x) = \frac{x+2}{x^{2}+1}\end{align*}

To identify domain limitations, find value(s) which make the denominator = 0: In this case, where \begin{align*}x^2\end{align*}, the only variable in the denominator, is added to 0, any value for x will be positive. So the domain is all real numbers.
With no limitations on the domain, there are no vertical asymptotes.
The horizontal asymptote: \begin{align*}y=0\end{align*} becomes apparent as x becomes huge and the "+2" and "+1" no longer have an effect, giving: \begin{align*}f(x) = \frac{x}{x^2} \to f(x) = \frac{1}{x} \to f(x) = 0\end{align*} So the horizontal asymptote is 0
Now that you know the shape of the graph, simply shade the area below the lines, since the original function was f(x) is less-than function, and leave the lines solid since it was or equal to.
The final graph should look like:

 

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / Notes
Show More

Image Attributions

Explore More

Sign in to explore more, including practice questions and solutions for Polynomial and Rational Inequalities.
Please wait...
Please wait...