Skip Navigation

Power Property of Logarithms

Manipulate exponents in logarithms

Atoms Practice
Estimated7 minsto complete
Practice Power Property of Logarithms
This indicates how strong in your memory this concept is
Estimated7 minsto complete
Practice Now
Turn In
Power Property of Logarithms

The hypotenuse of a right triangle has a length of \begin{align*}\log_3 27^8\end{align*}. How long is the triangle's hypotenuse?

Power Property

The last property of logs is the Power Property.

\begin{align*}\log_b x=y\end{align*}

Using the definition of a log, we have \begin{align*}b^y=x\end{align*}. Now, raise both sides to the \begin{align*}n\end{align*} power.

\begin{align*}(b^y)^n &= x^n \\ b^{ny} &= x^n\end{align*}

Let’s convert this back to a log with base \begin{align*}b\end{align*}, \begin{align*}\log_b x^n=ny\end{align*}. Substituting for \begin{align*}y\end{align*}, we have \begin{align*}\log_b x^n=n \log_b x\end{align*}.

Therefore, the Power Property says that if there is an exponent within a logarithm, we can pull it out in front of the logarithm.

Let's use the Power Property to expand the following logarithms.

  1. \begin{align*}\log_6 17x^5\end{align*}

To expand this log, we need to use the Product Property and the Power Property.

\begin{align*}\log_6 17x^5 &= \log_6 17 + \log_6 x^5 \\ &= \log_6 17 + 5\log_6 x\end{align*}

  1. \begin{align*}\ln \left(\frac{2x}{y^3}\right)^4\end{align*}

We will need to use all three properties to expand this problem. Because the expression within the natural log is in parenthesis, start with moving the \begin{align*}4^{th}\end{align*} power to the front of the log.

\begin{align*}\ln \left(\frac{2x}{y^3}\right)^4 &= 4 \ln \frac{2x}{y^3} \\ &= 4(\ln 2x - \ln y^3)\\ &= 4(\ln 2 + \ln x - 3 \ln y) \\ &= 4 \ln2 + 4 \ln x - 12 \ln y\end{align*}

Depending on how your teacher would like your answer, you can evaluate \begin{align*}4\ln2 \approx 2.77\end{align*}, making the final answer \begin{align*}2.77 + 4\ln x - 12\ln y\end{align*}.

Now, let's condense \begin{align*}\log 9 - 4\log 5 - 4\log x + 2\log 7 + 2\log y\end{align*}.

This is the opposite of the previous two problems. Start with the Power Property.

\begin{align*}&\log 9 - 4\log 5 - 4\log x + 2\log7 + 2\log y \\ &\log 9 - \log 5^4 - \log x^4 + \log 7^2 + \log y^2\end{align*}

Now, start changing things to division and multiplication within one log.

\begin{align*}\log \frac{9 \cdot 7^2 y^2}{5^4 x^4}\end{align*}

Lastly, combine like terms.

\begin{align*}\log \frac{441 y^2}{625 x^4}\end{align*}


Example 1

Earlier, you were asked to find the length of the triangle's hypotenuse. 

We can rewrite \begin{align*}\log_3 27^8\end{align*} and \begin{align*}8\log_3 27\end{align*} and solve.

\begin{align*}8\log_3 27\\ = 8 \cdot 3\\ = 24\end{align*}

Therefore, the triangle's hypotenuse is 24 units long.

Example 2

Expand the following expression: \begin{align*}\ln x^3\end{align*}.

The only thing to do here is apply the Power Property: \begin{align*}3 \ln x\end{align*}.

Example 3

Expand the following expression: \begin{align*}\log_{16} \frac{x^2 y}{32 z^5}\end{align*}.

Let’s start with using the Quotient Property.

\begin{align*}\log_{16} \frac{x^2 y}{32 z^5} = \log_{16} x^2y - \log_{16} 32z^5\end{align*}

Now, apply the Product Property, followed by the Power Property.

\begin{align*}&= \log_{16}x^2 + \log_{16} y - \left(\log_{16} 32 + \log_{16} z^5 \right) \\ &= 2 \log_{16} x + \log_{16} y - \frac{5}{4} -5 \log_{16}z\end{align*}

Simplify \begin{align*}\log_{16} 32 \rightarrow 16^n = 32 \rightarrow 2^{4n} = 2^5\end{align*} and solve for \begin{align*}n\end{align*}. Also, notice that we put parenthesis around the second log once it was expanded to ensure that the \begin{align*}z^5\end{align*} would also be subtracted (because it was in the denominator of the original expression).

Example 4

Expand the following expression: \begin{align*}\log (5c^4)^2\end{align*}.

For this problem, you will need to apply the Power Property twice.

\begin{align*}\log (5c^4)^2 &= 2 \log 5c^4 \\ &= 2(\log 5 + \log c^4) \\ &= 2(\log 5 + 4 \log c) \\ &= 2 \log 5 + 8 \log c\end{align*}

Important Note: You can write this particular log several different ways. Equivalent logs are: \begin{align*}\log 25 + 8 \log c, \log 25 + \log c^8\end{align*} and \begin{align*}\log 25c^8\end{align*}. Because of these properties, there are several different ways to write one logarithm.

Example 5

Condense into one log: \begin{align*}\ln 5 - 7 \ln x^4 + 2 \ln y\end{align*}.

To condense this expression into one log, you will need to use all three properties.

\begin{align*}\ln 5 - 7 \ln x^4 + 2 \ln y &= \ln 5 - \ln x^{28} + \ln y^2 \\ &= \ln \frac{5 y^2}{x^{28}}\end{align*}

Important Note: If the problem was \begin{align*}\ln 5 - (7 \ln x^4 + 2 \ln y)\end{align*}, then the answer would have been \begin{align*}\ln \frac{5}{x^{28}y^2}\end{align*}. But, because there are no parentheses, the \begin{align*}y^2\end{align*} is in the numerator.


Expand the following logarithmic expressions.

  1. \begin{align*}\log_7 y^2\end{align*}
  2. \begin{align*}\log_{12} 5z^2\end{align*}
  3. \begin{align*}\log_4 (9x)^3\end{align*}
  4. \begin{align*}\log \left(\frac{3x}{y}\right)^2\end{align*}
  5. \begin{align*}\log_8 \frac{x^3 y^2}{z^4}\end{align*}
  6. \begin{align*}\log_5 \left(\frac{25x^4}{y}\right)^2\end{align*}
  7. \begin{align*}\ln \left(\frac{6x}{y^3}\right)^{-2}\end{align*}
  8. \begin{align*}\ln \left(\frac{e^5 x^{-2}}{y^3}\right)^6\end{align*}

Condense the following logarithmic expressions.

  1. \begin{align*}6 \log x\end{align*}
  2. \begin{align*}2 \log_6 x + 5 \log_6 y\end{align*}
  3. \begin{align*}3(\log x - \log y)\end{align*}
  4. \begin{align*}\frac{1}{2} \log(x+1) - 3 \log y\end{align*}
  5. \begin{align*}4 \log_2 y + \frac{1}{3} \log_2 x^3\end{align*}
  6. \begin{align*}\frac{1}{5} \left[10 \log_2 (x-3) + \log_2 32 - \log_2 y \right]\end{align*}
  7. \begin{align*}4 \left[\frac{1}{2} \log_3 y - \frac{1}{3} \log_3 x - \log_3 z \right]\end{align*}

Answers for Review Problems

To see the Review answers, open this PDF file and look for section 8.9. 

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / Notes
Show More


Power Property The power property for logarithms states that as long as b \ne 1, then \log_b x^n = n \log_b x.

Image Attributions

Explore More

Sign in to explore more, including practice questions and solutions for Power Property of Logarithms.
Please wait...
Please wait...