<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Skip Navigation
Our Terms of Use (click here to view) have changed. By continuing to use this site, you are agreeing to our new Terms of Use.

Powers and Roots of Complex Numbers

De Moivre's Theorem using polar form.

Atoms Practice
Estimated10 minsto complete
Practice Powers and Roots of Complex Numbers
Estimated10 minsto complete
Practice Now
Turn In
Powers and Roots of Complex Numbers

Manually calculating (simplifying) a statement such as: or in present (rectangular) form would be a very intensive process at best.

Fortunately you will learn in this lesson that there is an alternative: De Moivre's theorem. De Moivre's theorem is really the only practical method for finding the powers or roots of a complex number, but there is a catch...

What must be done to a complex number before De Moivre's theorem can be utilized?

Powers and Roots of Complex Numbers

Powers of Complex Numbers

How do we raise a complex number to a power? Let’s start with an example:

In rectangular form, this can get very complex. What about in r cis θ form?

So the problem becomes

and using our multiplication rule from the previous section,

Notice, (a + bi)3 = r3 cis 3 θ

In words: Raise the r-value to the same degree as the complex number is raised and then multiply that by cis of the angle multiplied by the number of the degree.

Reflecting on the example above, we can identify De Moivre's Theorem:

Let z = r(cos θ + i sin θ) be a complex number in rcisθ form. If n is a positive integer, znis
zn = rn (cos() + i sin())

It should be clear that the polar form provides a much faster result for raising a complex number to a power than doing the problem in rectangular form.



Roots of Complex Numbers

You probably noticed long ago that when an new operation is presented in mathematics, the inverse operation often follows. That is generally because the inverse operation is often procedurally similar, and it makes good sense to learn both at the same time.

This is no exception:

The inverse operation of finding a power for a number is to find a root of the same number.

  1. Recall from algebra that any root can be written as x1/n
  2. Given that the formula for De Moivre’s theorem also works for fractional powers, the same formula can be used for finding roots:




Example 1

Earlier, you were asked what should be done to a complex number before you can use De Moivre's theorem on it.

A complex number operation written in rectangular form, such as: must be converted to polar form before utilizing De Moivre's theorem.

Example 2

Find the value of .

and θ is in the 1st quadrant, so

Using our equation from above:

Expanding cis form:

Finally we have

z4 = -8 - 13.856i

Example 3

Find .

First, rewriting in exponential form: (1 + i)½

And now in polar form:

Expanding cis form,

Using the formula:

In decimal form, we get

=1.189( 0.924 + 0.383i)

=1.099 + 0.455i

To check, we will multiply the result by itself in rectangular form:

Example 4

Find the value of .

First we put in polar form.

Use to obtain

let in rectangular form

in polar form

Use De Moivre’s theorem to find the first solution:


Leave answer in cis form to find the remaining solutions:

n = 3 which means that the 3 solutions are radians apart or


NOTE: It is not necessary to add again. Adding three times equals 2π. That would result in rotating around a full circle and to start where it all began- that is the first solution.

The three solutions are:

Each of these solutions, when graphed will be apart.

Check any one of these solutions to see if the results are confirmed.

Checking the second solution:

Does (-0.965 – 0.810i)3 or (-0.965 – 0.810i) (-0.965 – 0.810i) (-0.965 – 0.810i)

Example 5

What are the two square roots of i?

Let .

or Utilizing De Moivre’s theorem:




Check for z1 solution: (0.707 + 0.707i)2 = i?

0.500 + 0.500i + 0.500i + 0.500i2 = 0.500 + i + 0.500(-1) or i

Example 6

Calculate . What are the four fourth roots of 1?

Let z = 1 or z = 1 + 0i. Then the problem becomes find z1/4 = (1 + 0i)1/4.

Since with or or

That root is not a surprise. Now use De Moivre’s to find the other roots:

Since there are 4 roots, dividing 2π by 4 yields 0.5π

or 0 + i or just i which yields z3 = -1

Finally,  or

The four fourth roots of 1 are 1, i, -1 and -i.

Example 7

Calculate .

To calculate start by converting to form.

First, find . Recall .

If and then and is in quadrant I. Now that we have trigonometric form, the rest is easy:

..... Write the original problem in form

..... De Moivre's theorem

..... Simplify

..... Simplify again


Perform the indicated operation on these complex numbers:

  1. Divide:
  2. Multiply:
  3. Multiply:
  4. Find the product using polar form:
  5. Multiply:
  6. Multiply:
  7. Divide:
  8. Divide:

Use De Moivre’s theorem.

  1. Identify the 3 complex cube roots of
  2. Identify the 4 complex fourth roots of
  3. Identify the five complex fifth roots of

Review (Answers)

To see the Review answers, open this PDF file and look for section 4.10. 

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / Notes
Show More


complex number

A complex number is the sum of a real number and an imaginary number, written in the form a + bi.

De Moivre's Theorem

De Moivre's theorem is the only practical manual method for identifying the powers or roots of complex numbers. The theorem states that if z= r(\cos \theta + i \sin \theta) is a complex number in r cis \theta form and n is a positive integer, then z^n=r^n (\cos (n\theta ) + i\sin (n\theta )).

Image Attributions

Explore More

Sign in to explore more, including practice questions and solutions for Powers and Roots of Complex Numbers.
Please wait...
Please wait...