<meta http-equiv="refresh" content="1; url=/nojavascript/"> Powers and Roots of Complex Numbers ( Study Aids ) | Analysis | CK-12 Foundation
Dismiss
Skip Navigation
You are viewing an older version of this Study Guide. Go to the latest version.

Powers and Roots of Complex Numbers

%
Best Score
Practice
Best Score
%
Practice Now
Complex Number Theorems
 0  0  0

Vocabulary

Fill in the equation for each theorem then describe each theorem in your own words.
Theorem Equation Description
Product Theorem __________________________ _________________________________________________
Quotient Theorem __________________________ _________________________________________________
De Moivre's Theorem __________________________ _________________________________________________

Practice

Product and Quotient Theorems

If z_1 = 7 \left( \frac{\pi}{2} \right) and  z_2 = 9 \left(\frac{\pi}{3} \right) find:

  1. z_1 z_2
  2. \left( \frac{z_1}{z_2} \right)
  3. \left( \frac{z_2}{z_1} \right)
  4. (z_1)^2
  5. (z_2)^3

.

Find the quotients

  1.  2(cos 80^o + i sin 80^o) \div 6(cos 200^o + i sin 200^o)
  2.  3cis(130^o) \div 4cis(270^o)
.
Click here for help with the Product and Quotient theorems.

.

Powers and Roots 

To find roots of complex numbers, you De Moivre's Theorem to creat the equation z^{1/n} = (a + bi)^{1/n} = r^{1/n} cis \left ( \frac{\theta}{n} \right ). This helps you find roots.

Remember: Numbers must be in polar form to use De Moivre's Theorem!

.

Use De Moivre’s Theorem:

  1. [3(\mbox{cos} \ 80^\circ + i \ \mbox{sin} \ 80^\circ)]^3
  2. \left [\sqrt{2} \left (\mbox{cos}\ \frac{5\pi}{16} + i \ \mbox{sin} \ \frac{5\pi}{16} \right ) \right ]^4
  3. \left (\sqrt{3} - i \right )^6
  4. Identify the 3 complex cube roots of 1 + i
  5. Identify the 4 complex fourth roots of -16i
.

Click here for answers.

Image Attributions

Reviews

Email Verified
Well done! You've successfully verified the email address .
OK
Please wait...
Please wait...
ShareThis Copy and Paste

Original text