<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation
You are viewing an older version of this Study Guide. Go to the latest version.

Powers and Roots of Complex Numbers

De Moivre's Theorem using polar form.

Atoms Practice
Estimated10 minsto complete
%
Progress
Practice Powers and Roots of Complex Numbers
Practice
Progress
Estimated10 minsto complete
%
Practice Now
Turn In
Complex Number Theorems

Vocabulary

Fill in the equation for each theorem then describe each theorem in your own words.
Theorem Equation Description
Product Theorem __________________________ _________________________________________________
Quotient Theorem __________________________ _________________________________________________
De Moivre's Theorem __________________________ _________________________________________________

Practice

Product and Quotient Theorems

If z1=7(π2) and z2=9(π3) find:

  1. z1z2
  2. (z1z2)
  3. (z2z1)
  4. (z1)2
  5. (z2)3

.

Find the quotients

  1. 2(cos80o+isin80o)÷6(cos200o+isin200o)
  2. 3cis(130o)÷4cis(270o)
.
Click here for help with the Product and Quotient theorems.

.

Powers and Roots 

To find roots of complex numbers, you De Moivre's Theorem to creat the equation z1/n=(a+bi)1/n=r1/ncis(θn). This helps you find roots.

Remember: Numbers must be in polar form to use De Moivre's Theorem!

.

Use De Moivre’s Theorem:

  1. [3(cos 80+i sin 80)]3
  2. [2(cos 5π16+i sin 5π16)]4
  3. (3i)6
  4. Identify the 3 complex cube roots of 1+i
  5. Identify the 4 complex fourth roots of 16i
.

Click here for answers.

Explore More

Sign in to explore more, including practice questions and solutions for Product and Quotient Theorems.
Please wait...
Please wait...