Skip Navigation

Solving Exponential Equations

Equations with terms raised to exponents including x

Atoms Practice
Estimated27 minsto complete
Practice Solving Exponential Equations
This indicates how strong in your memory this concept is
Estimated27 minsto complete
Practice Now
Turn In
Exponential Equations

Feel free to modify and personalize this study guide by clicking “Customize.”

Logarithms are simply another tool that can be used to isolate a variable when solving for x.  It is important to remember that when a log of a side of an equation is taken, the entire side is put inside the log function.  For example, taking the log of 3x+5y = 12 would result in log(3x+5y) = log(12), not log(3x)+log(5y) = log(12).  Also remember that logs do not "cancel out" an exponent's base unless the base of the log and the exponent match.  More tips are listed below.


Utilize the addition/subtraction log rules: they can be used to combine to log terms

Not only can you take the log of both sides, but you can also put a number to the power of each side and maintain equality. (e.g. 2x = 6, 32x = 36).

Utilize the exponent rule to "bring down" variables (e.g. log(32x) = 2x•log(3))

If the log's base and the exponent's base DO match, then they will drop out (e.g. log(104)=4)

Practice problems can be found here.

Explore More

Sign in to explore more, including practice questions and solutions for Solving Exponential Equations.
Please wait...
Please wait...