*Feel free to modify and personalize this study guide by clicking “Customize.”*

Logarithms are simply another tool that can be used to isolate a variable when solving for x. It is important to remember that when a log of a side of an equation is taken, the entire side is put inside the log function. For example, taking the log of 3x+5y = 12 would result in log(3x+5y) = log(12), not log(3x)+log(5y) = log(12). Also remember that logs do not "cancel out" an exponent's base unless the base of the log and the exponent match. More tips are listed below.

**Tips**

Utilize the addition/subtraction log rules: they can be used to combine to log terms

Not only can you take the log of both sides, but you can also put a number to the power of each side and maintain equality. (e.g. 2x = 6, 3^{2x }= 3^{6}).

Utilize the exponent rule to "bring down" variables (e.g. log(3^{2x}) = 2x•log(3))

If the log's base and the exponent's base DO match, then they will drop out (e.g. log(10^{4})=4)

Practice problems can be found here.