<meta http-equiv="refresh" content="1; url=/nojavascript/">

# Solving Logarithmic Equations

## Use technology to solve equations with logs

0%
Progress
Practice Solving Logarithmic Equations
Progress
0%
Solving Logarithmic Equations

"I'm thinking of another number," you tell your best friend. "The number I'm thinking of satisfies the equation log10x2logx=3\begin{align*}\log 10x^2 - \log x = 3\end{align*} ." What number are you thinking of?

### Guidance

A logarithmic equation has the variable within the log. To solve a logarithmic equation, you will need to use the inverse property, blogbx=x\begin{align*}b^{\log_b x}=x\end{align*} , to cancel out the log.

#### Example A

Solve log2(x+5)=9\begin{align*}\log_2(x+5)=9\end{align*} .

Solution: There are two different ways to solve this equation. The first is to use the definition of a logarithm.

log2(x+5)29512507=9=x+5=x+5=x

The second way to solve this equation is to put everything into the exponent of a 2, and then use the inverse property.

2log2(x+5)x+5x=29=512=507

Make sure to check your answers for logarithmic equations. There can be times when you get an extraneous solution. log2(507+5)=9log2512=9\begin{align*}\log_2(507+5)=9 \rightarrow \log_2 512=9 \end{align*}

#### Example B

Solve 3ln(x)5=10\begin{align*}3 \ln(-x)-5=10\end{align*} .

Solution: First, add 5 to both sides and then divide by 3 to isolate the natural log.

3ln(x)53ln(x)ln(x)=10=15=5

Recall that the inverse of the natural log is the natural number. Therefore, everything needs to be put into the exponent of e\begin{align*}e\end{align*} in order to get rid of the log.

eln(x)xx=e5=e5=e5148.41

Checking the answer, we have 3ln((e5))5=103lne55=10355=10\begin{align*}3 \ln(-(-e^5))-5=10 \rightarrow 3\ln e^5 -5 =10 \rightarrow 3 \cdot 5-5=10\end{align*}

#### Example C

Solve log5x+log(x1)=2\begin{align*}\log 5x + \log(x-1)=2\end{align*}

Solution: Condense the left-hand side using the Product Property.

log5x+log(x1)=2log[5x(x1)]=2log(5x25x)=2

Now, put everything in the exponent of 10 and solve for x\begin{align*}x\end{align*} .

10log(5x25x)5x25xx2x20(x5)(x+4)x=102=100=0=0=5,4

log5(5)+log(51)log25+log4log100=2log5(4)+log((4)1)=2=2 log(20)+log(5)=2=2

-4 is an extraneous solution. In the step log(20)+log(5)=2\begin{align*}\log(-20) + \log(-5)=2\end{align*} , we cannot take the log of a negative number, therefore -4 is not a solution. 5 is the only solution.

Intro Problem Revisit We can rewrite log10x2logx=3\begin{align*}\log 10x^2 - \log x = 3\end{align*} as log10x2x=3\begin{align*}\log {\frac{10x^2}{x}} = 3\end{align*} and solve for x .

log10x2x=3log10x=310log10x=10310x=1000x=100

Therefore, the number you are thinking of is 100.

### Guided Practice

Solve the following logarithmic equations.

1. 9+2log3x=23\begin{align*}9 + 2 \log_3 x=23\end{align*}

2. ln(x1)ln(x+1)=8\begin{align*}\ln (x-1)-\ln(x+1)=8\end{align*}

3. 12log5(2x+5)=5\begin{align*}\frac{1}{2}\log_5(2x+5)=5\end{align*}

1. Isolate the log and put everything in the exponent of 3.

9+2log3x2log3xlog3xx=23=14=7=37=2187

2. Condense the left-hand side using the Quotient Rule and put everything in the exponent of e\begin{align*}e\end{align*} .

ln(x1)ln(x+1)ln(x1x+1)x1x+1x1x1xxln8x(1ln8)x=8=8=ln8=(x+1)ln8=xln8+ln8=1+ln8=1+ln8=1+ln81ln82.85

Checking our answer, we get ln(2.851)ln(2.85+1)=8\begin{align*}\ln (-2.85-1) - \ln (2.85+1)=8\end{align*} , which does not work because the first natural log is of a negative number. Therefore, there is no solution for this equation.

3. Multiply both sides by 2 and put everything in the exponent of a 5.

12log5(2x+5)log5(2x+5)2x+52xx=2=4=625=620=310

### Explore More

Use properties of logarithms and a calculator to solve the following equations for x\begin{align*}x\end{align*} . Round answers to three decimal places and check for extraneous solutions.

1. log2x=15\begin{align*}\log_2 x =15\end{align*}
2. log12x=2.5\begin{align*}\log_{12} x = 2.5\end{align*}
3. log9(x5)=2\begin{align*}\log_9 (x-5) =2\end{align*}
4. log7(2x+3)=3\begin{align*}\log_7(2x+3)=3\end{align*}
5. 8ln(3x)=5\begin{align*}8 \ln(3-x)=5\end{align*}
6. 4log33xlog3x=5\begin{align*}4 \log_3 3x-\log_3 x=5\end{align*}
7. log(x+5)+logx=log14\begin{align*}\log(x+5) + \log x = \log 14\end{align*}
8. 2lnxlnx=0\begin{align*}2 \ln x - \ln x =0\end{align*}
9. 3log3(x5)=3\begin{align*}3 \log_3(x-5) = 3\end{align*}
10. 23log3x=2\begin{align*}\frac{2}{3} \log_3 x=2\end{align*}
11. 5logx23log1x=log8\begin{align*}5 \log \frac{x}{2} -3 \log \frac{1}{x} = \log 8\end{align*}
12. 2lnxe+2lnx=10\begin{align*}2 \ln x^{e+2} - \ln x=10\end{align*}
13. 2log6x+1=log6(5x+4)\begin{align*}2 \log_6 x+1 = \log_6(5x+4)\end{align*}
14. 2log12x+2=log12(x+10)\begin{align*}2 \log_{\frac{1}{2}}x+2=\log_{\frac{1}{2}}(x+10)\end{align*}
15. 3log23xlog2327=log238\begin{align*}3 \log_{\frac{2}{3}} x-\log_{\frac{2}{3}} 27 = \log_{\frac{2}{3}}8\end{align*}