The number of tagged deer reported to the game commission one Saturday is represented by the sum \sum\limits_{n=1}^6 3n  2 . How many tagged deer were reported?
Guidance
A series is the sum of the terms in a sequence. A series is often expresses in summation notation(also called sigma notation) which uses the capital Greek letter @$\sum@$ , sigma. Example: @$\sum\limits_{n=1}^5 n=1+2+3+4+5=15@$ . Beneath the sigma is the index (in this case @$n@$ ) which tells us what value to plug in first. Above the sigma is the upper limit which tells us the upper limit to plug into the rule.
Example A
Write the terms and find the sum of the series: @$\sum\limits_{n=1}^6 4n+1@$
Solution: Begin by replacing n with the values 1 through 6 to find the terms in the series and then add them together.
@$$& \left(4(1)1\right)+\left(4(2)1\right)+\left(4(3)1\right)+\left(4(4)1\right)+\left(4(5)1\right)+\left(4(6)1\right) \\ & 3+7+11+15+19+23 \\ & =78@$$
Calculator: The graphing calculator can also be used to evaluate this sum. We will use a compound function in which we will sum a sequence. Go to @$2^{nd}@$ STAT (to get to the List menu) and arrow over to MATH . Select option 5: sum( then return to the List menu, arrow over to OPS and select option 5: seq( to get sum(seq( on your screen. Next, enter in (expression, variable, begin, end)just as we did in the previous topic to list the terms in a sequence. By including the sum( command, the calculator will sum the terms in the sequence for us. For this particular problem the expression and result on the calculator are:
@$$sum(seq(4x1,x,1,6))=78@$$
To obtain a list of the terms, just use @$seq\left(4x1,x,1,6\right)=\{3 \ \ 7 \ \ 11 \ \ 15 \ \ 19 \ \ 23\}@$ .
Example B
Write the terms and find the sum of the series: @$\sum\limits_{n=9}^{11} \frac{n(n+1)}{2}@$
Solution: Replace @$n@$ with the values 9, 10 and 11 and sum the resulting series.
@$$& \frac{9(91)}{2}+\frac{10(101)}{2}+\frac{11(111)}{2} \\ & \qquad \qquad \qquad 36+45+55 \\ & \qquad \qquad \qquad \qquad 136@$$
Using the calculator: @$sum(seq(x(x1)/2,x,9,11))=136@$ .
More Guidance
There are a few special series which are used in more advanced math classes, such as calculus. In these series, we will use the variable, @$i@$ , to represent the index and @$n@$ to represent the upper bound (the total number of terms) for the sum.
@$\sum\limits_{i=1}^n 1=n@$
Let @$n = 5@$ , now we have the series @$\sum\limits_{i=1}^5 1=1+1+1+1+1=5@$ . Basically, in the series we are adding 1 to itself @$n@$ times (or calculating @$n\times1@$ ) so the resulting sum will always be @$n@$ .
@$\sum\limits_{i=1}^n i=\frac{n(n+1)}{2}@$
If we let @$n=5@$ again we get @$\sum\limits_{i=1}^n i=1+2+3+4+5=15=\frac{5(5+1)}{2}@$ . This one is a little harder to derive but can be illustrated using different values of @$n@$ . This rule is closely related to the rule for the sum of an arithmetic series and will be used to prove the sum formula later in the chapter.
@$\sum\limits_{i=1}^n i=\frac{n(n+1)(2n+1)}{6}@$
Let @$n=5@$ once more. Using the rule, the sum is @$\frac{5(5+1)(2(5)+1)}{6}=\frac{5(6)(11)}{6}=55@$
If we write the terms in the series and find their sum we get @$1^2+2^2+3^2+4^2+5^2=1+4+9+16+25=55@$ .
The derivation of this rule is beyond the scope of this course.
Example C
Use one of the rules above to evaluate @$\sum\limits_{i=1}^{15} i^2@$ .
Solution: Using the rule @$\sum\limits_{i=1}^n i^2=\frac{n(n+1)(2n+1)}{6}@$ , we get @$\frac{15(15+1)(2(15)+1)}{6}=\frac{15(16)(31)}{6}=1240@$
Intro Problem Revisit Begin by replacing n with the values 1 through 6 to find the terms in the series and then add them together.
@$$& \left(3(1)2\right)+\left(3(2)2\right)+\left(3(3)2\right)+\left(3(4)2\right)+\left(3(5)2\right)+\left(3(6)2\right) \\ & 1+4+7+10+13+16 \\ & =51@$$
Therefore, 51 deer were reported.
Guided Practice
Evaluate the following. First without a calculator, then use the calculator to check your result.
1. @$\sum\limits_{n=3}^7 2(n3)@$
2. @$\sum\limits_{n=1}^7 \frac{1}{2}n+1@$
3. @$\sum\limits_{n=1}^4 3n^25@$
Answers
1. @$$\sum\limits_{n=3}^7 2(n3) &=2(33)+2(43)+2(53)+2(63)+2(73) \\ &=2(0)+2(1)+2(2)+2(3)+2(4) \\ &=0+2+4+6+8 \\ &=20@$$
@$sum(seq(2(x3),x,3,7)=20@$
2. @$$\sum\limits_{n=1}^7 \frac{1}{2}n+1 &=\frac{1}{2}(1)+1+\frac{1}{2}(2)+1+\frac{1}{2}(3)+1+\frac{1}{2}(4)+1+\frac{1}{2}(5)+1+\frac{1}{2}(6)+1+\frac{1}{2}(7)+1 \\ &=\frac {1}{2}+1+1+1+\frac{3}{2}+1+2+1+\frac{5}{2}+1+3+1+\frac{7}{2}+1 \\ &=\frac{16}{2}+13 \\ &=8+13 \\ &=21@$$
@$sum(seq(1/2x+1,x,1,7)=21@$
3. @$$\sum\limits_{n=1}^4 3n^25 &=3(1)^25+3(2)^25+3(3)^25+3(4)^25 \\ &=35+125+275+485 \\ &=9020 \\ &=70 @$$
@$sum(seq(3x^25,x,1,4)=70@$
Explore More
Write out the terms and find the sum of the following series.
 @$\sum\limits_{n=1}^5 2n@$
 @$\sum\limits_{n=5}^8 n+3@$
 @$\sum\limits_{n=10}^{15} n(n3)@$
 @$\sum\limits_{n=3}^7 \frac{n(n1)}{2}@$
 @$\sum\limits_{n=1}^6 2^{n1}+3@$
Use your calculator to find the following sums.
 @$\sum\limits_{n=10}^{15} \frac{1}{2}n+3@$
 @$\sum\limits_{n=0}^{50} n25@$
 @$\sum\limits_{n=1}^5 \left(\frac{1}{2}\right)^{n5}@$
 @$\sum\limits_{n=5}^{12} \frac {n(2n+1)}{2}@$
 @$\sum\limits_{n1}^{100} \frac{1}{2}n@$
 @$\sum\limits_{n=1}^{200} n@$
In problems 1214, write out the terms in each of the series and find the sums.

.
 @$\sum\limits_{n=1}^5 2n+3@$
 @$3(5)+\sum\limits_{n=1}^5 2n@$

.
 @$\sum\limits_{n=1}^5 \frac{n(n+1)}{2}@$
 @$\frac{1}{2}\sum\limits_{n=1}^5 n(n+1)@$

.
 @$\sum\limits_{n=1}^5 4x^3@$
 @$4\sum\limits_{n=1}^5 x^3@$
 Explain why each pair in questions 1214 has the same sum.
 What is another way to explain the series in #11?