<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Skip Navigation

Sum Notation and Properties of Sigma

Identify and state the sum of terms in finite series

Atoms Practice
Estimated31 minsto complete
Practice Sum Notation and Properties of Sigma
This indicates how strong in your memory this concept is
Estimated31 minsto complete
Practice Now
Turn In
Sum Notation and Series Sums

Feel free to modify and personalize this study guide by clicking “Customize.”


Complete the chart.
Word Definition
________________ the large, stylized capitol that means, approximately, "the sum of"
Index __________________________________________________________
________________ the expression being summed in a sigma
Limits __________________________________________________________
________________ when a series has a limit, and the limit exists
________________ when a series does not have a limit, or the limit is infinity
Hypothesis __________________________________________________________
Mathematical induction __________________________________________________________
Partial sum __________________________________________________________

Properties of Sigma

Label the sigma, index, summand, and limit:



The above can be read as "find the _____ of the first ______ terms of the series, where the nth term is ____.

What does the sum above add to? __________

True or false: You can factor a coefficient out of a sum. ____________


Express the Sum using Sigma Notation:

  1. 1+5+9+13+17
  2. 1+12+13+14+...+110

Find the series of numbers indicated and evaluate the summations:

  1. n=105743(n1)
  2. n=2382(n1)
  3. n=515+43(n1)
  4. n=164(12)n1
  5. n=173(12)n1
  6. n=1113(43)n1


Click here for answers.


Gauss' Formula

Gauss' Formula allows us to add together the first positive integers:


.In your own words, describe how Gauss' Formula works. _________________________________________________________________________

Explain how to use your calculator to solve n=19n2 :


Keep in mind Gauss' Formula can also be written as Sn=n(a1+an)2.


Calculate the sums of the given series. You may use addition of individual terms or a series sum formula.

  1. n=0101412(n1)
  2. 71367321+...+373
  3. 2+4+6+...26
  4. 21+0+...+12
  5. The first eight numbers of an arithmetic sequence add up to 604. The next eight numbers added up equal 156. Find the first number and the common difference in the sequence.
  6. The first number in an arithmetic sequence is 80. Find the common difference if we also know that s9 is eighteen times a11
  7. If an is an arithmetic sequence with a1=1 . Find the second number if we know that the sum of the first five numbers is one-fourth of the sum of the next five numbers.
  8. Given (an)=78,75,72,69... Find a150 and s150


Click here for answers and click here for help problem solving with series sums.

Explore More

Sign in to explore more, including practice questions and solutions for Sum Notation and Properties of Sigma.
Please wait...
Please wait...