<meta http-equiv="refresh" content="1; url=/nojavascript/"> Sum Notation and Properties of Sigma ( Study Aids ) | Analysis | CK-12 Foundation
Dismiss
Skip Navigation

Sum Notation and Properties of Sigma

%
Progress
Practice Sum Notation and Properties of Sigma
Practice
Progress
%
Practice Now
Sum Notation and Series Sums

Feel free to modify and personalize this study guide by clicking “Customize.”

Vocabulary

Complete the chart.
Word Definition
________________ the large, stylized capitol that means, approximately, "the sum of"
Index __________________________________________________________
________________ the expression being summed in a sigma
Limits __________________________________________________________
________________ when a series has a limit, and the limit exists
________________ when a series does not have a limit, or the limit is infinity
Hypothesis __________________________________________________________
Mathematical induction __________________________________________________________
Partial sum __________________________________________________________

Properties of Sigma

Label the sigma, index, summand, and limit:

\sum_{n=1}^4 3n

.

The above can be read as "find the _____ of the first ______ terms of the series, where the nth term is ____.

What does the sum above add to? __________

True or false: You can factor a coefficient out of a sum. ____________

.

Express the Sum using Sigma Notation:

  1. 1 + 5 + 9 + 13 + 17
  2. 1 + \frac{1} {2} + \frac{1} {3} + \frac{1} {4} + ... + \frac{1} {10}


Find the series of numbers indicated and evaluate the summations:

  1. \sum_{n=-10}^{5} 7 -\frac{4}{3}(n-1)
  2. \sum_{n=-2}^{3} 8 -2(n-1)
  3. \sum_{n=-5}^{1} 5 +\frac{4}{3}(n-1)
  4. \sum_{n=1}^{6} 4(\frac{1}{2})^{n-1}
  5. \sum_{n=1}^{7} 3(-\frac{1}{2})^{n-1}
  6. \sum_{n=1}^{11} -3(\frac{4}{3})^{n-1}

.

Click here for answers.

.

Gauss' Formula

Gauss' Formula allows us to add together the first positive integers:

\sum = \frac{(n) (n + 1)} {2}

.In your own words, describe how Gauss' Formula works. _________________________________________________________________________

Explain how to use your calculator to solve \sum_{n = 1}^9 n^2 :

_________________________________________________________________________

Keep in mind Gauss' Formula can also be written as S_n = \frac{n(a_1 + a_n)} {2}.

.

Calculate the sums of the given series. You may use addition of individual terms or a series sum formula.

  1. \sum_{n = 0}^10 14 - \frac{1}{2}(n - 1)
  2. \frac{-71}{3} - \frac{67}{3} - 21 + ... + \frac{37}{3}
  3. 2 + 4 + 6 + ... 26
  4. -2 - 1 + 0 + ... + 12
  5. The first eight numbers of an arithmetic sequence add up to 604. The next eight numbers added up equal 156. Find the first number and the common difference in the sequence.
  6. The first number in an arithmetic sequence is 80. Find the common difference if we also know that s_9 is eighteen times a_{11}
  7. If a_n is an arithmetic sequence with  a_1 = 1 . Find the second number if we know that the sum of the first five numbers is one-fourth of the sum of the next five numbers.
  8. Given (a_n) = 78, 75, 72, 69...  Find a_{150} and s_{150}

.

Click here for answers and click here for help problem solving with series sums.

Image Attributions

Explore More

Sign in to explore more, including practice questions and solutions for Sum Notation and Properties of Sigma.

Reviews

Please wait...
Please wait...

Original text