<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />

# Vertical and Horizontal Transformations

## Shifts of parent functions produced by adding a constant term.

Estimated8 minsto complete
%
Progress
Practice Vertical and Horizontal Transformations

MEMORY METER
This indicates how strong in your memory this concept is
Progress
Estimated8 minsto complete
%
Transforming Functions

Feel free to modify and personalize this study guide by clicking “Customize.”

### Vocabulary

 Word Definition ____________ Also called translation or slide; a transformation applied to the graph of a function which does not change the shape of the graph, only the location ____________ a result of adding a constant term to the value of a function; moves up or down Horizontal Shift _________________________________________________________________ Reflection _________________________________________________________________ ____________ A transformation which results in the width of a graph being increased or decreased; the result of the co-efficient of the x term being between 0 and 1. Compression _________________________________________________________________

What transformations must be applied to y=x2\begin{align*}y = x^{2}\end{align*} , in order to graph g(x)=3(x4)2+2\begin{align*}g(x) = 3(x - 4)^{2} + 2\end{align*} ?

### Practice

1. If a function is multiplied by a coefficient, what will happen to the graph of the function?
2. What does multiplying x by a number greater than one create?
3. What happens when we multiply x by a number between 0 and 1
4. In order to obtain a reflection over the y axis what do we have to do to x?
5. How do we obtain a reflection over the x-axis?
6. Write a function that will create a horizontal compression of the following: f(x)=x2+3\begin{align*}f(x) = x^2 + 3\end{align*}
7. Write a function that will horizontally stretch the following: f(x)=x26\begin{align*}f(x) = x^2 - 6\end{align*}
8. Rewrite this function f(x)=x\begin{align*}f(x) = -\sqrt{x}\end{align*} to get a reflection over the x-axis.
9. Rewrite this function f(x)=x\begin{align*}f(x) = \sqrt{x}\end{align*} to get a reflection over the y-axis.
##### Graph each of the following using transformations. Identify which transformations are used.
1. f(x)=|x3|+4\begin{align*}f(x) = |x-3| + 4\end{align*}
2. h(x)=x+7\begin{align*}h(x) = \sqrt{x + 7}\end{align*}
3. g(x)=1x5\begin{align*}g(x) = \frac{1}{x - 5}\end{align*}
4. f(x)=3x3\begin{align*}f(x) = -3x^3\end{align*}
5. h(x)=(x7)3+4\begin{align*}h(x) = (x - 7)^3 + 4\end{align*}
6. f(x)=14(x9)2+5\begin{align*}f(x) = \frac{1}{4}(x - 9)^2 + 5\end{align*}
7. f(x)=3x+26\begin{align*}f(x) = 3\sqrt{x + 2} - 6\end{align*}
8. f(x)=34(x+5)+45\begin{align*}f(x) = \frac{3}{4(x + 5)} + \frac{4}{5}\end{align*}
1. What part of the function g(x)=(f(x)+1)=(x3+1)\begin{align*}g(x) = -(f(x) + 1) = -(x^3 + 1)\end{align*} shifts the graph of f(x)\begin{align*}f(x)\end{align*}vertically?
2. What part of the function g(x)=(f(x)+1)\begin{align*}g(x) = -(f(x) + 1)\end{align*} reflects the graph of f(x)\begin{align*}f(x)\end{align*} across the x-axis?
3. What is different between the functions g(x)=(x3+1.0)\begin{align*}g(x) = -(x^3 + 1.0)\end{align*} and h(x)=x3+1.0\begin{align*}h(x) = -x^3 + 1.0\end{align*} that changes the appearance of the graph?
4. Write a function g(x)\begin{align*}g(x)\end{align*} whose graph looks like the graph of f(x)=|x|\begin{align*}f(x) = |x|\end{align*} reflected across the x-axis and shifted up 1 unit. g(x)=\begin{align*}g(x) =\end{align*}
5. How do you transform the graph of: f(x)=x3\begin{align*}f(x) = x^3\end{align*} so that it looks like the graph of:f(x)=4x3+6\begin{align*}f(x) = 4x^3 + 6\end{align*}
1. Stretch it by a factor of ¼ and shift it up 6 units.
2. Stretch it by a factor of 6 and shift it left 4 units.
3. Stretch it by a factor of 4 and shift it down 6 units.
4. Stretch it by a factor of 4 and shift it up 6 units.

Click for more help on:

### Explore More

Sign in to explore more, including practice questions and solutions for Vertical and Horizontal Transformations.