<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation
Our Terms of Use (click here to view) and Privacy Policy (click here to view) have changed. By continuing to use this site, you are agreeing to our new Terms of Use and Privacy Policy.

Differences of Mixed Numbers without Renaming

Subtracting equivalent mixed/improper fractions

Atoms Practice
Estimated6 minsto complete
%
Progress
Practice Differences of Mixed Numbers without Renaming
Practice
Progress
Estimated6 minsto complete
%
Practice Now
Differences of Mixed Numbers without Renaming
Credit: regan76
Source: https://www.flickr.com/photos/j_regan/7612628332/
License: CC BY-NC 3.0

Matt is making a dress for his sister. He has \begin{align*}7 \frac{2}{3}\end{align*}723 yards of fabric. He needs \begin{align*}2 \frac{1}{3}\end{align*}213  yards to make the dress. How much fabric will Matt have after he makes her dress?

In this concept, you will learn how to subtract mixed numbers. 

Subtracting Mixed Numbers without Renaming

A mixed number is a whole number with a fraction. Just as you can add mixed numbers, you can also subtract mixed numbers in the same way. Subtract the fractions first and then the whole numbers.

Here is a subtraction problem. 

\begin{align*}& \quad \ \ 6\frac{3}{8}\\ & \underline{- \ \ \ 4\frac{1}{8}\;}\end{align*}  638   418

Start by subtracting the fractions. These fractions have the same denominator so you can simply subtract the numerators. 

\begin{align*}& \quad \ \ 6\frac{3}{8}\\ & \underline{- \ \ \ 4\frac{1}{8}\;}\\ & \quad \ \ \ \ \frac{2}{8}\end{align*}  638   418    28

Next, subtract the whole numbers.

\begin{align*}& \quad \ \ 6\frac{3}{8}\\ & \underline{- \ \ \ 4\frac{1}{8}\;}\\ & \quad \ \ 2 \frac{2}{8}\end{align*}  638   418  228

Finally, simplify the fraction in  \begin{align*}2\frac{2}{8}\end{align*}228

\begin{align*}2\frac{2}{8}=2\frac{1}{4}\end{align*}228=214

The final answer is \begin{align*}2\frac{1}{4}\end{align*}214.

If the subtraction problem involves mixed numbers with different denominators, rewrite the fractions of the mixed numbers so they have a common denominator before subtracting.

Here is another subtraction problem. 

\begin{align*}& \quad \ \ 6\frac{3}{4}\\ & \underline{- \ \ \ 3\frac{1}{6}\;}\end{align*}  634   316

First, rewrite the fractions with a common denominator. The common denominator is 12. 

\begin{align*}\frac{3}{4} = \frac{9}{12}\quad \quad \frac{1}{6} = \frac{2}{12}\end{align*}34=91216=212

\begin{align*}& \quad \ \ 6\frac{9}{12}\\ & \underline{- \ \ \ 3\frac{2}{12}\;}\end{align*} 

Then, subtract the fractions. 

\begin{align*} & \quad \ \ 6\frac{9}{12}\\ & \underline{- \ \ \ 3\frac{2}{12}\;}\\ & \quad \ \ \ \ \frac {7}{12}\end{align*} Next, subtract the whole numbers. 

\begin{align*}& \quad \ \ 6\frac{9}{12}\\ & \underline{- \ \ \ 3\frac{2}{12}\;}\\ & \quad \ \ 3 \frac {7}{12}\end{align*}

The difference is \begin{align*}3\frac{7}{12}\end{align*}.

Examples

Example 1

Earlier, you were given a problem about Matt making a dress for his sister.

Matt has \begin{align*}7 \frac{2}{3}\end{align*} yards of fabric and uses \begin{align*}2\frac{1}{3}\end{align*}  yards to make his sister a dress. Subtract the amount of fabric he used from the original amount to find how much fabric he has left. 

 \begin{align*}7\frac{2}{3} - 2 \frac{1}{3} = \underline {\;\;\;\;\;\;}\end{align*} 

First, subtract the fractions.

 \begin{align*}\frac{2}{3} - \frac{1}{3} = \frac{1}{3}\end{align*}

Then, subtract the whole numbers.

 \begin{align*}&7-2=5 \\ \\ &7\frac{2}{3} - 2 \frac{1}{3} = 5\frac{1}{3} \end{align*}

Matt will have \begin{align*}5 \frac{1}{3}\end{align*} yards of fabric left over. 

Example 2

Subtract the fractions. Answer in simplest form.

\begin{align*}12\frac{46}{49} - 10\frac{39}{49}=\underline{\;\;\;\;\;\;\;\;\;}\end{align*}

The fractions have a common denominator.

First, subtract the fractions. 

 \begin{align*}\frac{46}{49} - \frac{39}{49}= \frac{7}{49}\end{align*}

Then, subtract the whole numbers.

 \begin{align*}12-10 &=2 \\ \\ 12\frac{46}{49} - 10\frac{39}{49} &= 2\frac{7}{49}\end{align*}

Next, simplify the fraction part of the mixed number.

\begin{align*}2 \frac{7}{49} = 2 \frac {1}{7}\end{align*}

The difference is \begin{align*}2 \frac{1}{7}\end{align*}.

Example 3

Subtract the fractions: \begin{align*}4\frac{4}{5}-3\frac{1}{5}=\underline{\;\;\;\;\;\;\;\;\;}\end{align*}. Answer in simplest form.

First, subtract the fractions.

 \begin{align*}\frac{4}{5}-\frac{1}{5}=\frac {3}{5}\end{align*}

Then, subtract the whole numbers.

\begin{align*}4-3 &=1 \\ \\ 4\frac{4}{5}-3\frac{1}{5} &=1\frac{3}{5}\end{align*}

The difference is \begin{align*}1 \frac{3}{5}\end{align*}.

Example 4

Subtract the fractions: \begin{align*}6\frac{4}{6}-1\frac{2}{6}=\underline{\;\;\;\;\;\;\;\;\;}\end{align*}. Answer in simplest form.

First, subtract the fractions.

 \begin{align*}\frac{4}{6}-\frac{2}{6}=\frac {2}{6}\end{align*}

Then, subtract the whole numbers.

 \begin{align*}6-1 &=5\\ \\ 6\frac{4}{6}-1\frac{2}{6} &= 5 \frac{2}{6}\end{align*}

Next, simplify the fraction part of the mixed number.

 \begin{align*}5\frac{2}{6} = 5 \frac{1}{3}\end{align*}

The difference is \begin{align*}5 \frac{1}{3}\end{align*}.

Example 5

Subtract the fractions: \begin{align*}7\frac{8}{9}-4\frac{4}{6}=\underline{\;\;\;\;\;\;\;\;\;}\end{align*}. Answer in simplest form.

First, rewrite the fractions with a common denominator of 18. 

 \begin{align*}& \frac{8}{9}=\frac{16}{18} \quad \quad \frac{4}{6} = \frac{12}{18}\\ \\ & 7\frac{16}{18}-4\frac{12}{18}=\underline {\;\;\;\;\;\;}\end{align*}

Then, subtract the fractions.

 \begin{align*}\frac{16}{18}-\frac{12}{18}=\frac{4}{18}\end{align*}

Next, subtract the whole numbers.

 \begin{align*}7-4 &=3\\ \\ 7\frac{16}{18}- 4 \frac{12}{18} &= 3\frac{4}{18}\end{align*}
Finally, simplify the fraction.
 \begin{align*}3\frac{4}{18}=3\frac{2}{9}\end{align*}

The difference is \begin{align*}3 \frac{2}{9}\end{align*}.

Review

Subtract the following mixed numbers. Answer in simplest form.

  1. \begin{align*}6\frac{2}{9}-4\frac{1}{9}=\underline{\;\;\;\;\;\;\;\;\;}\end{align*}
  2. \begin{align*}5\frac{6}{10}-2\frac{1}{10}=\underline{\;\;\;\;\;\;\;\;\;}\end{align*}
  3. \begin{align*}8\frac{2}{8}-4\frac{1}{8}=\underline{\;\;\;\;\;\;\;\;\;}\end{align*}
  4. \begin{align*}12\frac{4}{8}-4\frac{2}{8}=\underline{\;\;\;\;\;\;\;\;\;}\end{align*}
  5. \begin{align*}6\frac{9}{10}-4\frac{2}{10}=\underline{\;\;\;\;\;\;\;\;\;}\end{align*}
  6. \begin{align*}15\frac{6}{15}-5\frac{3}{15}=\underline{\;\;\;\;\;\;\;\;\;}\end{align*}
  7. \begin{align*}18\frac{4}{12}-7\frac{2}{12}=\underline{\;\;\;\;\;\;\;\;\;}\end{align*}
  8. \begin{align*}20\frac{5}{20}-19\frac{1}{20}=\underline{\;\;\;\;\;\;\;\;\;}\end{align*}
  9. \begin{align*}5\frac{2}{5}-1\frac{1}{3}=\underline{\;\;\;\;\;\;\;\;\;}\end{align*}
  10. \begin{align*}8\frac{1}{2}-4\frac{1}{4}=\underline{\;\;\;\;\;\;\;\;\;}\end{align*}
  11. \begin{align*}6\frac{1}{3}-2\frac{1}{6}=\underline{\;\;\;\;\;\;\;\;\;}\end{align*}
  12. \begin{align*}5\frac{1}{4}-3\frac{2}{10}=\underline{\;\;\;\;\;\;\;\;\;}\end{align*}
  13. \begin{align*}8\frac{1}{3}-2\frac{1}{4}=\underline{\;\;\;\;\;\;\;\;\;}\end{align*}
  14. \begin{align*}12\frac{3}{4}-2\frac{1}{3}=\underline{\;\;\;\;\;\;\;\;\;}\end{align*}
  15. \begin{align*}18\frac{6}{9}-12\frac{1}{4}=\underline{\;\;\;\;\;\;\;\;\;}\end{align*}

Review (Answers)

To see the Review answers, open this PDF file and look for section 6.11. 

Resources

Vocabulary

Mixed Number

A mixed number is a number made up of a whole number and a fraction, such as 4\frac{3}{5}.

Image Attributions

  1. [1]^ Credit: regan76; Source: https://www.flickr.com/photos/j_regan/7612628332/; License: CC BY-NC 3.0

Explore More

Sign in to explore more, including practice questions and solutions for Differences of Mixed Numbers without Renaming.
Please wait...
Please wait...