<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Our Terms of Use (click here to view) have changed. By continuing to use this site, you are agreeing to our new Terms of Use.

# Division of Whole Numbers by Fractions

## Understand how to divide a whole number by a fraction.

Estimated8 minsto complete
%
Progress
Practice Division of Whole Numbers by Fractions
Progress
Estimated8 minsto complete
%
Division of Whole Numbers by Fractions
Source: https://www.flickr.com/photos/39908901@N06/11386507493/
License: CC BY-NC 3.0

Vanessa is making a game. She has a 40 inch long roll of paper and wants to divide this piece of paper into 12\begin{align*}\frac{1}{2}\end{align*} inch strips. How many strips of paper can Vanessa make?

In this concept, you will learn how to divide a whole number by a fraction.

### Dividing Whole Numbers by Fractions

Sometimes you will need to divide a whole number by a fraction. Here is an example.

1÷12=\begin{align*}1 \div \frac{1}{2} = \underline{\;\;\;\;\;\;\;}\end{align*}

At first glance, you might think that the answer would be one-half. This problem is not asking for 12\begin{align*}\frac{1}{2}\end{align*} of 1. It is asking for how many 12\begin{align*}\frac{1}{2}\end{align*}s are in 1. Here is a diagram of 1 whole.

Divide the whole into 12\begin{align*}\frac{1}{2}\end{align*}s.

There are 2 one-half sections. The answer is 2.

You learned that when you divide a fraction by a whole number, you instead multiply by the reciprocal of the divisor. The same applies to dividing a whole number by a fraction. Change the operation to multiplication and change the divisor to its reciprocal.

Here is the division problem again.

1÷12=\begin{align*}1 \div \frac{1}{2} = \end{align*}

First, change the operation to multiplication and 12\begin{align*}\frac{1}{2}\end{align*} to its reciprocal.

1÷12=1×21\begin{align*}1 \div \frac{1}{2} = 1 \times \frac{2}{1} \end{align*}

Then, multiply. Remember that any whole number can be written as a fraction, n=n1\begin{align*}n=\frac{n}{1}\end{align*}. In this example, the identity property of multiplication states that a number multiplied by 1 will be the number itself. 21\begin{align*}\frac{2}{1}\end{align*} is also equal to 2.

1×21=1×2=2\begin{align*}1 \times \frac{2}{1} = 1 \times 2 = 2\end{align*}

The answer is the same as when you used the pictures.

### Examples

#### Example 1

Earlier, you were given a problem about Vanessa and her game.

Vanessa wants to cut 12\begin{align*}\frac{1}{2}\end{align*} inch strips of paper from a roll of paper that is 40 inches long. Divide 40 by 12\begin{align*}\frac{1}{2}\end{align*} to find the total number of strips of paper she can make.

First, write a division problem.

40÷12=\begin{align*}40 \div \frac{1}{2} = \underline{\;\;\;\;\;\;\;}\end{align*}

Then, change this into a multiplication problem. Multiply by the reciprocal of the divisor.

40÷12=40×21strips of paper\begin{align*}40 \div \frac{1}{2} = 40 \times \frac{2}{1} \text{strips of paper}\end{align*}

Next, multiply the fractions. Remember that 21\begin{align*}\frac{2}{1}\end{align*} is also equal to 2.

40×21=40×2=80\begin{align*}40 \times \frac{2}{1} = 40 \times 2 = 80\end{align*}

Vanessa can make 80 strips from a 40 inch long roll of paper.

#### Example 2

Divide by fraction.

25÷25=\begin{align*}25 \div \frac{2}{5} = \underline{\;\;\;\;\;\;\;}\end{align*}

First, change the operation to multiplication and 25\begin{align*}\frac{2}{5}\end{align*} to its reciprocal.

25÷25=25×52\begin{align*}25 \div \frac{2}{5} = 25 \times \frac{5}{2} \end{align*}

Then, multiply. Remember that 25 can also be written as 251\begin{align*}\frac{25}{1}\end{align*}.

251×52=1252\begin{align*}\frac{25}{1} \times \frac{5}{2}=\frac{125}{2} \end{align*}

Next, simplify the fraction. Convert the improper fraction to a mixed number.

1252=6212\begin{align*}\frac{125}{2} = 62 \frac{1}{2}\end{align*}

The answer is 6212\begin{align*}62 \frac{1}{2}\end{align*}.

#### Example 3

Divide by fraction: 4÷12=\begin{align*}4 \div \frac{1}{2} = \underline{\;\;\;\;\;\;\;}\end{align*}.

First, change the expression. Multiply by the inverse of the divisor.

4÷12=4×21\begin{align*}4\div \frac{1}{2} = 4 \times \frac {2}{1}\end{align*}

Then, multiply.

4×2=8\begin{align*}4 \times 2 = 8\end{align*}

The answer is 8.

#### Example 4

Divide by fraction: 6÷13=\begin{align*}6 \div \frac{1}{3} = \underline{\;\;\;\;\;\;\;}\end{align*}.

First, change the expression. Multiply by the inverse of the divisor.

6÷13=6×31\begin{align*}6 \div \frac{1}{3} = 6 \times \frac{3}{1}\end{align*}

Then, multiply.

6×3=18\begin{align*}6 \times 3 = 18\end{align*}

The answer is 18.

#### Example 5

Divide by fraction: 12÷34=\begin{align*}12 \div \frac{3}{4} = \underline{\;\;\;\;\;\;\;}\end{align*}.

First, change the expression. Multiply by the inverse of the divisor.

12÷34=12×43\begin{align*}12 \div \frac{3}{4} =12 \times \frac{4}{3}\end{align*}

Then, multiply.

12×43=1241×431=16\begin{align*}12 \times \frac{4}{3} =\frac{\cancel{12}^4}{1} \times \frac{4}{\cancel{3}^1}= 16\end{align*}

The answer is 16.

### Review

Divide the following whole numbers and fractions.

1. 8÷13=\begin{align*}8 \div \frac{1}{3} = \underline{\;\;\;\;\;\;\;}\end{align*}
2. 18÷12=\begin{align*}18 \div \frac{1}{2} = \underline{\;\;\;\;\;\;\;}\end{align*}
3. 28÷14=\begin{align*}28 \div \frac{1}{4} = \underline{\;\;\;\;\;\;\;}\end{align*}
4. 14÷17=\begin{align*}14 \div \frac{1}{7} = \underline{\;\;\;\;\;\;\;}\end{align*}
5. 16÷23=\begin{align*}16 \div \frac{2}{3} = \underline{\;\;\;\;\;\;\;}\end{align*}
6. 22÷12=\begin{align*}22 \div \frac{1}{2} = \underline{\;\;\;\;\;\;\;}\end{align*}
7. 24÷25=\begin{align*}24 \div \frac{2}{5} = \underline{\;\;\;\;\;\;\;}\end{align*}
8. 36÷23=\begin{align*}36 \div \frac{2}{3} = \underline{\;\;\;\;\;\;\;}\end{align*}
9. 40÷310=\begin{align*}40 \div \frac{3}{10} = \underline{\;\;\;\;\;\;\;}\end{align*}
10. 60÷13=\begin{align*}60 \div \frac{1}{3} = \underline{\;\;\;\;\;\;\;}\end{align*}
11. 12÷34=\begin{align*}12 \div \frac{3}{4} = \underline{\;\;\;\;\;\;\;}\end{align*}
12. 48÷212=\begin{align*}48 \div \frac{2}{12} = \underline{\;\;\;\;\;\;\;}\end{align*}
13. 18÷16=\begin{align*}18 \div \frac{1}{6} = \underline{\;\;\;\;\;\;\;}\end{align*}
14. 30÷25=\begin{align*}30 \div \frac{2}{5} = \underline{\;\;\;\;\;\;\;}\end{align*}
15. 45÷59=\begin{align*}45 \div \frac{5}{9} = \underline{\;\;\;\;\;\;\;}\end{align*}

### Review (Answers)

To see the Review answers, open this PDF file and look for section 7.9.

### Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / Notes
Show More

### Vocabulary Language: English

Inverse Operation

Inverse operations are operations that "undo" each other. Multiplication is the inverse operation of division. Addition is the inverse operation of subtraction.

reciprocal

The reciprocal of a number is the number you can multiply it by to get one. The reciprocal of 2 is 1/2. It is also called the multiplicative inverse, or just inverse.

### Image Attributions

1. [1]^ Source: https://www.flickr.com/photos/39908901@N06/11386507493/; License: CC BY-NC 3.0

### Explore More

Sign in to explore more, including practice questions and solutions for Division of Whole Numbers by Fractions.
Please wait...
Please wait...