<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation
Our Terms of Use (click here to view) and Privacy Policy (click here to view) have changed. By continuing to use this site, you are agreeing to our new Terms of Use and Privacy Policy.

Multiplication of Fractions

Primarily proper fractions

Atoms Practice
Estimated10 minsto complete
%
Progress
Practice Multiplication of Fractions
Practice
Progress
Estimated10 minsto complete
%
Practice Now
Multiply and Divide Fractions and Mixed Numbers

License: CC BY-NC 3.0

The grade 8 students are going to plant flowers around the school. Each grade 8 class is given \begin{align*}6 \frac{1}{2}\end{align*} flats of flowers. The grade 8 classes are then split into groups and each group is given \begin{align*}\frac{1}{4}\end{align*} of a flat. How many groups of grade 8 students are going out to plant flowers?

In this concept, you will learn to multiply and divide fractions and mixed numbers.

Multiplying and Dividing Fractions

To multiply two fractions, simply multiply the numerators to get the numerator of the product, and multiply the denominators to get the denominator of the product.

Let's look at an example.

Multiply: \begin{align*}\frac{2}{7} \times \frac{3}{5}\end{align*}

First, multiply the numerators and the denominators.

\begin{align*}\frac{2}{7} \times \frac{3}{5} &= \frac{2 \times 3}{7 \times 5}\\ \frac{2}{7} \times \frac{3}{5} &= \frac{6}{35}\end{align*}

The answer is \begin{align*}\frac{6}{35}\end{align*}.

To divide two fractions, you first need to find the reciprocal of the divisor. That means that you need to flip the second fraction upside down. Then multiply the numerators and multiply the denominators.

Let's look at an example.

Divide: \begin{align*}4 \frac{3}{10} \div \frac{1}{2}\end{align*}

First, change the mixed number to an improper fraction.

 \begin{align*}4 \times 10 + 3 &= 43\\ 4 \frac{3}{10} &= \frac{43}{10}\end{align*}

Next, flip the second fraction in order to multiply.

Therefore, \begin{align*}\frac{1}{2}\end{align*}  becomes \begin{align*}\frac{2}{1}\end{align*}.

Then, multiply.

\begin{align*}4 \frac{3}{10} \div \frac{1}{2} &= \frac{43}{10} \times \frac{2}{1}\\ &= \frac{86}{10}\end{align*}

Then, simplify your answer as a mixed number.

\begin{align*}\frac{86}{10} &= 8 \frac{6}{10}\\ &= 8 \frac{3}{5}\end{align*}

The answer is \begin{align*}8 \frac{3}{5}\end{align*}.

Examples

Example 1

Earlier, you were given a problem about the groups planting flowers around the school.

There are six and one half flats of flowers given to each grade 8 class, and each group in the grade 8 class received \begin{align*}\frac{1}{4}\end{align*}of a flat to plant.

Therefore, you need to divide \begin{align*}6 \frac{1}{2} \div \frac{1}{4}\end{align*} in order to find out the number of groups in each grade 8 class.

First, change the mixed number to an improper fraction.

\begin{align*}6 \times 2 + 1 &= 13\\ 6 \frac{1}{2} &= \frac{13}{2}\end{align*}

Next, flip the second fraction in order to multiply.

Therefore \begin{align*}\frac{1}{4}\end{align*} becomes \begin{align*}\frac{4}{1}\end{align*}.

Then, multiply.

\begin{align*}6 \frac{1}{2} \div \frac{1}{4} &= \frac{13}{2} \times \frac{4}{1}\\ &= \frac{52}{2}\end{align*}

Then, simplify your answer.

\begin{align*}\frac{52}{2} = 26\end{align*}

The answer is 26.

Therefore, there are 26 groups of grade 8 students in each class.

Example 2

\begin{align*}\frac{2}{3} \times \frac{4}{6}\end{align*}

First, multiply the numerators and the denominators.

\begin{align*}\frac{2}{3} \times \frac{4}{6} &= \frac{2 \times 4}{3 \times 6}\\ \frac{2}{3} \times \frac{4}{6} &= \frac{8}{18}\end{align*}

Next, reduce the fraction.

\begin{align*}\frac{8}{18} = \frac{4}{9}\end{align*}

The answer is \begin{align*}\frac{4}{9}\end{align*}.

Example 3

\begin{align*}9 \frac{1}{4} \div \frac{1}{3}\end{align*}

First, change the mixed number to an improper fraction.

\begin{align*}9 \times 4 + 1 &= 37\\ 9 \frac{1}{4} &= \frac{37}{4}\end{align*}

Next, flip the second fraction in order to multiply.

Therefore \begin{align*}\frac{1}{3}\end{align*} becomes \begin{align*}\frac{3}{1}\end{align*}.

Then, multiply.

\begin{align*}9 \frac{1}{4} \div \frac{1}{3} &= \frac{37}{4} \times \frac{3}{1}\\ &= \frac{111}{4}\end{align*}

Then, simplify your answer as a mixed number.

\begin{align*}\frac{111}{4} = 27 \frac{3}{4}\end{align*}

The answer is \begin{align*}27 \frac{3}{4}\end{align*}.

Example 4

\begin{align*}\frac{1}{4} \times \frac{5}{6}\end{align*}

First, multiply the numerators and the denominators.

\begin{align*} \frac{1}{4} \times \frac{5}{6} = \frac{1 \times 5}{4 \times 6}\\ \frac{1}{4} \times \frac{5}{6} = \frac{5}{24}\end{align*} 

The answer is \begin{align*}\frac{5}{24}\end{align*}.

Example 5

\begin{align*}2 \frac{1}{2} \div \frac{1}{3}\end{align*}

First, change the mixed number to an improper fraction.

\begin{align*}2 \times 2 + 1 &= 5\\ 2 \frac{1}{2} &= \frac{5}{2}\end{align*}

Next, flip the second fraction in order to multiply.

Therefore \begin{align*}\frac{1}{3}\end{align*} becomes \begin{align*}\frac{3}{1}\end{align*}.

Then, multiply.

\begin{align*}2 \frac{1}{2} \div \frac{1}{3} &= \frac{5}{2} \times \frac{3}{1}\\ &= \frac{15}{2} \end{align*}

Then, simplify your answer as a mixed number.

\begin{align*}\frac{15}{2} = 7 \frac{1}{2}\end{align*}

The answer is \begin{align*}7 \frac{1}{2}\end{align*}.

Review

Multiply the following fractions. Be sure to simplify your answer when necessary.

1. \begin{align*}\frac{1}{2} \times \frac{3}{4} =\underline{\;\;\;\;\;\;\;\;\;\;}\end{align*}

2. \begin{align*}\frac{3}{4}\times\frac{5}{6}=\underline{\;\;\;\;\;\;\;\;\;\;}\end{align*}

3. \begin{align*}\frac{1}{6}\times\frac{1}{3}=\underline{\;\;\;\;\;\;\;\;\;\;}\end{align*}

4. \begin{align*}\frac{5}{6}\times\frac{10}{12}=\underline{\;\;\;\;\;\;\;\;\;\;}\end{align*}

5. \begin{align*}\frac{7}{8}\times\frac{1}{3}=\underline{\;\;\;\;\;\;\;\;\;\;}\end{align*}

6. \begin{align*}\frac{8}{9}\times\frac{1}{3}=\underline{\;\;\;\;\;\;\;\;\;\;}\end{align*}

7. \begin{align*}\frac{10}{11}\times\frac{2}{5}=\underline{\;\;\;\;\;\;\;\;\;\;}\end{align*}

8. \begin{align*}\frac{9}{10}\times\frac{4}{6}=\underline{\;\;\;\;\;\;\;\;\;\;}\end{align*}

9. \begin{align*}\frac{4}{7}\times\frac{1}{2}=\underline{\;\;\;\;\;\;\;\;\;\;}\end{align*}

Divide the following fractions. Be sure to convert any answers of improper fractions to mixed numbers.

10. \begin{align*}\frac{3}{4} \div \frac{1}{2}=\underline{\;\;\;\;\;\;\;\;\;\;}\end{align*}

11. \begin{align*}\frac{5}{6} \div \frac{1}{3}=\underline{\;\;\;\;\;\;\;\;\;\;}\end{align*}

12. \begin{align*}\frac{8}{9} \div \frac{1}{2}=\underline{\;\;\;\;\;\;\;\;\;\;}\end{align*}

13. \begin{align*}\frac{15}{16} \div \frac{1}{2}=\underline{\;\;\;\;\;\;\;\;\;\;}\end{align*}

14. \begin{align*}\frac{8}{9} \div \frac{1}{3}=\underline{\;\;\;\;\;\;\;\;\;\;}\end{align*}

15. \begin{align*}\frac{5}{10} \div \frac{1}{2}=\underline{\;\;\;\;\;\;\;\;\;\;}\end{align*}

16. \begin{align*}\frac{6}{8} \div \frac{3}{4}=\underline{\;\;\;\;\;\;\;\;\;\;}\end{align*}

17. \begin{align*}\frac{6}{7} \div \frac{1}{2}=\underline{\;\;\;\;\;\;\;\;\;\;}\end{align*}

18. \begin{align*}\frac{10}{12} \div \frac{1}{3}=\underline{\;\;\;\;\;\;\;\;\;\;}\end{align*}

Review (Answers)

To see the Review answers, open this PDF file and look for section 2.8.  

Resources

Vocabulary

fraction

A fraction is a part of a whole. A fraction is written mathematically as one value on top of another, separated by a fraction bar. It is also called a rational number.

Greatest Common Factor

The greatest common factor of two numbers is the greatest number that both of the original numbers can be divided by evenly.

improper fraction

An improper fraction is a fraction in which the absolute value of the numerator is greater than the absolute value of the denominator.

Mixed Number

A mixed number is a number made up of a whole number and a fraction, such as 4\frac{3}{5}.

Product

The product is the result after two amounts have been multiplied.

Quotient

The quotient is the result after two amounts have been divided.

Image Attributions

  1. [1]^ License: CC BY-NC 3.0

Explore More

Sign in to explore more, including practice questions and solutions for Multiplication of Fractions.
Please wait...
Please wait...